Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Rice (N Y) ; 10(1): 49, 2017 Dec 02.
Article in English | MEDLINE | ID: mdl-29197985

ABSTRACT

BACKGROUND: Intersubspecific autotetraploid rice hybrids possess high hybrid vigor; however, low pollen fertility is a critical hindrance in its commercial utilization. Our previous study demonstrated that polyploidy could increase the multi-loci interaction and cause high pollen abortion in autotetraploid rice hybrids. However, there is little known about the critical role of pollen sterility locus or loci in the intersubspecific hybrids. We developed autotetraploid rice hybrids harboring heterozygous genotypes (S i S i S j S j ) at different pollen sterility loci by using the near isogenic lines of Taichung65-4×. Moreover, autotetraploid lines carrying double neutral genes, Sa n and Sb n , were used to assess their effect on fertility restoration. RESULTS: Cytological studies showed that the deleterious genetic interactions at Sa and Sb pollen sterility loci resulted in higher pollen sterility (76.83%) and abnormal chromosome behavior (24.59%) at metaphase I of meiosis in autotetraploid rice hybrids. Transcriptome analysis revealed 1092 differentially expressed genes (DEG) in a hybrid with the pervasive interactions at Sa and Sb pollen sterility loci, and most of the genes (about 83%) exhibited down regulation. Of the DEG, 60 were associated with transcription regulation and 18 genes were annotated as meiosis-related genes. Analysis on the hybrids developed by using autotetraploid rice harboring double neutral genes, Sa n and Sb n , revealed normal pollen fertility, and transcriptome analysis showed non-significant difference in number of DEG among different hybrids. CONCLUSIONS: Our finding revealed that pervasive interactions at Sa and Sb pollen sterility loci cause high sterility in the autotetraploid hybrids that lead to the down-regulation of important meiosis-related genes and transcription regulation factors. Moreover, we also found that the hybrids sterility could be overcome by double neutral genes, Sa n and Sb n , in autotetraploid rice hybrids. The present study provided a strong evidence for the utilization of heterosis in autotetraploid rice hybrids.

2.
Int J Nanomedicine ; 11: 6517-6531, 2016.
Article in English | MEDLINE | ID: mdl-27980407

ABSTRACT

Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards to cardiovascular development.


Subject(s)
Apoptosis/drug effects , Caproates/chemistry , Lactones/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Drug Carriers/pharmacology , Green Fluorescent Proteins/chemistry , Human Umbilical Vein Endothelial Cells , Humans , In Situ Nick-End Labeling , Micelles , Microscopy, Fluorescence , Neovascularization, Pathologic , Polymerase Chain Reaction , Tumor Suppressor Protein p53/metabolism , Zebrafish
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(3): 656-60, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-23865337

ABSTRACT

It is well known that beta-elemene is a broadly effective antitumor drug. In recent years, many studies suggested that beta-elemene also has potential value in the treatment of atherosclerosis and restenosis. In this paper, the effect of beta-elemene in inhibition of angiogenesis, inhibition of thrombus formation, improvement of hemorheology, protection against oxidative injuries, anti-inflammation and suppression of restenosis after percutaneous transluminal coronary angioplasty (PTCA) are summarized and reviewed.


Subject(s)
Atherosclerosis/prevention & control , Coronary Restenosis/prevention & control , Sesquiterpenes/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...