Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7012, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919285

ABSTRACT

The search for topological superconductivity (TSC) is currently an exciting pursuit, since non-trivial topological superconducting phases could host exotic Majorana modes. However, the difficulty in fabricating proximity-induced TSC heterostructures, the sensitivity to disorder and stringent topological restrictions of intrinsic TSC place serious limitations and formidable challenges on the materials and related applications. Here, we report a new type of intrinsic TSC, namely intrinsic surface topological superconductivity (IS-TSC) and demonstrate it in layered AuSn4 with Tc of 2.4 K. Different in-plane and out-of-plane upper critical fields reflect a two-dimensional (2D) character of superconductivity. The two-fold symmetric angular dependences of both magneto-transport and the zero-bias conductance peak (ZBCP) in point-contact spectroscopy (PCS) in the superconducting regime indicate an unconventional pairing symmetry of AuSn4. The superconducting gap and surface multi-bands with Rashba splitting at the Fermi level (EF), in conjunction with first-principle calculations, strongly suggest that 2D unconventional SC in AuSn4 originates from the mixture of p-wave surface and s-wave bulk contributions, which leads to a two-fold symmetric superconductivity. Our results provide an exciting paradigm to realize TSC via Rashba effect on surface superconducting bands in layered materials.

2.
Chemosphere ; 252: 126495, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32199160

ABSTRACT

Straw ash-washing wastewater is generated in the process of straw combustion power generation and potash fertilizer production. The suspended solid particles in straw ash-washing wastewater are hard to be settled down due to its low-density and high pH properties which inhibit the application of traditional chemical flocculants. Bioflocculant has good advantages in flocculating activity, biodegradability and adaptability of wastewater pH fluctuation. However, high production cost limited the large-scale applications of bioflocculant in wastewater treatment. In this study, the feasibility of using feather waste as cheap alternative nitrogen source of alkaliphilic Bacillus agaradhaerens C9 to produce bioflocculant was investigated. The results showed that strain C9 could simultaneously produce keratinase and bioflocculant, and thereby producing bioflocculant (named as BFF) using feather waste as cheap nitrogen source. The optimal fermentation conditions for enzymatic hydrolysis of feather waste and BFF production was 40 g/L feather wastes, 16 g/L glucose, 37 °C and pH 9.5, and the highest yield of 2.5 g/L was obtained. Moreover, BFF was used to flocculate straw ash-washing wastewater which exhibits low-density and high pH properties, and the highest flocculating rate of 93.1% was achieved when 6.0 mg/L BFF was added. This study reported for the first time that feather waste was used as inexpensive alternative nitrogen source for producing bioflocculant which could treat straw ash-washing wastewater, thereby promoting the resourceful utilization of feather waste and the reuse of straw ash-washing wastewater.


Subject(s)
Feathers , Nitrogen/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Animals , Bacillus , Carbon/chemistry , Fermentation , Flocculation , Hydrogen-Ion Concentration , Recycling
SELECTION OF CITATIONS
SEARCH DETAIL
...