Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37241710

ABSTRACT

Neurotransmitters are chemical messengers that play an important role in the nervous system's control of the body's physiological state and behaviour. Abnormal levels of neurotransmitters are closely associated with some mental disorders. Therefore, accurate analysis of neurotransmitters is of great clinical importance. Electrochemical sensors have shown bright application prospects in the detection of neurotransmitters. In recent years, MXene has been increasingly used to prepare electrode materials for fabricating electrochemical neurotransmitter sensors due to its excellent physicochemical properties. This paper systematically introduces the advances in MXene-based electrochemical (bio)sensors for the detection of neurotransmitters (including dopamine, serotonin, epinephrine, norepinephrine, tyrosine, NO, and H2S), with a focus on their strategies for improving the electrochemical properties of MXene-based electrode materials, and provides the current challenges and future prospects for MXene-based electrochemical neurotransmitter sensors.

2.
J Phys Condens Matter ; 34(25)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35358958

ABSTRACT

Transition metal dichalcogenide (TMD) van der Waals (vdW) heterostructures show great potential in the exploration of novel physical phenomena and practical applications. Compared to the traditional mechanical stacking techniques, chemical vapor deposition (CVD) method exhibits more advantages in preparing TMD vdW heterostructures. CVD enables the large-scale production of high-quality materials with clean interfaces in the future. Herein, CVD methods for the synthesis of TMD vdW heterostructures are summarized. These methods are categorized in two major strategies, multi-step process and one-step process. The effects of various factors are demonstrated, including the temperature, nucleation, and precursors. Finally, the remaining challenges are discussed.

3.
Nanotechnology ; 32(32)2021 May 17.
Article in English | MEDLINE | ID: mdl-33862606

ABSTRACT

Most electrocatalysts show a high mass and special activity during the ethanol oxidation reaction, but those still suffer from limited stability, finite renewable capability and poor anti-poisoning durability. Furthermore, the reliable structure and appropriate composition of catalysts are fairly associated with the electrocatalysis performance. Herein, we report the development of trimetallic Pd61Sn34Cu5nanocrystals (NCs) whose rough surfaces are rich in step atoms and coupled with abundant of SnOxand CuO, which may effectively boost reaction activity and rapidly remove carbonaceous intermediate, respectively. Under the tuning on the composition, the defect rich Pd61Sn34Cu5NCs exhibit elevated electrocatalysis activity and durability for ethanol oxidation reaction with an optimized mass activity (1.26 AmgPd-1) and specific activity (10.6 mA cm-2), which is about 2.21 and 2.58 times greater than that of the commercial Pd/C catalyst (0.57 AmgPd-1and 4.1 mA cm-2).

4.
J Org Chem ; 81(1): 51-6, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26673953

ABSTRACT

An interesting base-promoted protocol for the synthesis of 2-keto(hetero)aryl benzox(thi)azoles has been developed. Starting from commercially available 2-amino(thio)phenols and α,α-dihaloketones, moderate to good yields of the corresponding heterocycles can be achieved. Notably, only EtNH2 was required as the promoter here, and the reaction can be easily performed on a large scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...