Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mikrochim Acta ; 191(5): 289, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38683210

ABSTRACT

As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe3O4@Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm-1 is in relation to the concentration of acetamiprid in the range 2.25 × 10-9-2.25 × 10-5 M, and the calculated limit of detection (LOD) was 2.87 × 10-10 M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19-103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.


Subject(s)
Aptamers, Nucleotide , Gold , Limit of Detection , Metal Nanoparticles , Neonicotinoids , Silver , Spectrum Analysis, Raman , Neonicotinoids/analysis , Aptamers, Nucleotide/chemistry , Gold/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Platinum/chemistry , Insecticides/analysis , Cucumis sativus/chemistry
2.
Foods ; 11(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36359944

ABSTRACT

Chlorpyrifos is an organophosphorus insecticide, which can be used to control a variety of chewing and piercing mouthparts pests in agricultural production. It can destroy the normal nerve impulse conduction by inhibiting the activity of acetylcholinesterase or cholinesterase in the nerves, causing a series of poisoning symptoms. In order to achieve the quantitative analysis of chlorpyrifos residues in agricultural products, an aptamer-controlled signal molecule release method was developed in this study. The signal molecule 4-ATP of surface-enhanced Raman spectroscopy (SERS) was loaded into aminated mesoporous silica nanoparticles (MSNs-NH2) prepared by the one pot method, and then coated with an aptamer of chlorpyrifos through electrostatic interaction. The specific binding of the aptamer and chlorpyrifos led to the release of 4-ATP, and the amount of 4-ATP released was positively correlated with the amount of chlorpyrifos. Finally, the standard curve of chlorpyrifos quantitative detection based on SERS was established. Meanwhile, Ag-carrying mesoporous silica (Ag@MSNs) was prepared as the reinforcement substrate for SERS detection. The results showed that there was a good linear correlation between the Raman intensity and the concentration of chlorpyrifos at 25−250 ng/mL, and the limit of detection (LOD) was 19.87 ng/mL. The recoveries of chlorpyrifos in the apple and tomato samples were 90.08−102.2%, with RSD < 3.32%. This method has high sensitivity, specificity, reproducibility and stability, and can be used for the quantitative detection of chlorpyrifos in the environment and agricultural products.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121725, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35985229

ABSTRACT

In this study, we developed a novel, rapid, simple, and sensitive nano sensor based on the controlled release of 4-Aminothiophenol (4-ATP) signal molecules from aptamers (Apts) modified aminated mesoporous silica nanoparticles (MSNs-NH2) for the quantitative detection of acetamiprid (ACE). Firstly, we synthesized the positively charged MSNs-NH2 by one-pot method, then loaded 4-ATP signal molecules into the pore, and finally electrostatically adsorbed the Apts onto the MSNs-NH2, which acts as a gate to control the release of signal molecules. When ACE is added to the system, ACE preferentially and specifically binds to Apts, so the gate opens and 4-ATP signal molecules are released from the pore. Meanwhile, the silver-loaded mesoporous silica nanoparticles (Ag@SiO2) were prepared by one-pot method as surface-enhanced Raman spectroscopy (SERS) substrate to amplify the signal. The intensity of 4-ATP signal molecules at 1433 cm-1 position was observed to has a linear relationship with the concentration of ACE by SERS detection. Under the optimized detection conditions, a linear correlation was observed in the range of 5-60 ng/mL (R2 = 0.99749), and the limit of detection (LOD) was 2.66 ng/mL. The method has high sensitivity, good selectivity and reproducibility, and can be used for actual sample analysis with the recovery rate of 96.24-103.6 %. This study provides a reference for the rapid and convenient detection of ACE in agricultural products.


Subject(s)
Aptamers, Nucleotide , Metal Nanoparticles , Nanoparticles , Adenosine Triphosphate , Aptamers, Nucleotide/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Neonicotinoids , Reproducibility of Results , Silicon Dioxide/chemistry , Spectrum Analysis, Raman/methods
4.
Foods ; 11(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36010507

ABSTRACT

Acetamiprid (ACE) is widely used in various vegetables to control pests, resulting in residues and posing a threat to human health. For the rapid detection of ACE residues in vegetables, an indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) was established. The optimized experimental parameters were as follows: the concentrations of coating antigen (ACE-BSA) and anti-ACE monoclonal antibody were 0.4 and 0.6 µg/mL, respectively; the pre-incubation time of anti-ACE monoclonal antibody and ACE (sample) solution was 30 min; the dilution ratio of goat anti-mouse-HRP antibody was 1:2500; and the reaction time of chemiluminescence was 20 min. The half-maximum inhibition concentration (IC50), the detection range (IC10-IC90), and the detection limit (LOD, IC10) of the ic-CLEIA were 10.24, 0.70-96.31, and 0.70 ng/mL, respectively. The cross-reactivity rates of four neonicotinoid structural analogues (nitenpyram, thiacloprid, thiamethoxam, and clothianidin) were all less than 10%, showing good specificity. The average recovery rates in Chinese cabbage and cucumber were 82.7-112.2%, with the coefficient of variation (CV) lower than 9.19%, which was highly correlated with the results of high-performance liquid chromatography (HPLC). The established ic-CLEIA has the advantages of simple pretreatment and detection process, good sensitivity and accuracy, and can meet the needs of rapid screening of ACE residues in vegetables.

5.
Environ Sci Pollut Res Int ; 29(58): 88182-88192, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35831655

ABSTRACT

Acetamiprid (ACE) is widely used to control aphids, brown planthoppers, and other pests in agricultural production. However, ACE is difficult to degrade in the environment, resulting in excessive residue, which causes acute and chronic toxicity to human beings and non-target organisms. Therefore, the development of a rapid, convenient, and highly sensitive method to quantify ACE is essential. In this study, aminated mesoporous silica nanoparticles (MSNs-NH2) were synthesized by one-pot method, and 6-carboxyl fluorescein modified aptamers (FAM-Apt) of ACE were adsorbed on the surface of MSNs-NH2 by electrostatic interaction. Finally, a simple and sensitive fluorescence analysis method for the rapid detection of ACE was established. In the absence of ACE, the negatively charged FAM-Apt was electrostatically bound to the positively charged MSNs-NH2, followed by centrifugation to precipitate MSNs-NH2@FAM-Apt, and no fluorescent signal was detected in the supernatant. In the presence of ACE, the specific combination of FAM-Apt with ACE was greater than its electrostatic interaction with MSNs-NH2, so that FAM-Apt was separated from MSNs-NH2, and the supernatant had strong fluorescence signal after centrifugation. For ACE detection, the linear concentration range was 50-1100 ng/mL, and the detection limit (LOD) was 30.26 ng/mL. The method exhibited high sensitivity, selectivity and reproducibility, which is suitable for practical sample analysis and provides guidance for rapid detection of pesticide residues.


Subject(s)
Aptamers, Nucleotide , Nanoparticles , Humans , Silicon Dioxide/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Reproducibility of Results , Nanoparticles/chemistry
6.
Anal Methods ; 14(26): 2586-2595, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35723455

ABSTRACT

In this study, a designed hapten possessing the classic structure of PDE-5 inhibitors was synthesized. A monoclonal antibody (mAb) with broad recognition for six PDE-5 inhibitors was further produced. For the determination of lodenafil, methisosildenafil, mirodenafil, udenafil and tadalafil, the limit of detection (LOD) and IC50 ranged from 1.01 to 26.91 ng mL-1 and 12.75 to 278 ng mL-1, respectively. Thereafter, a quantum dot bead-based lateral flow immunoassay (QB-LFIA) was developed, which improved the LOD and IC50 to 0.32-6.52 ng mL-1 and 7.45-133.8 ng mL-1, respectively. Method validation was conducted using honey and capsule samples spiked with PDE-5 inhibitors, and the recoveries of the intra- and inter-assays ranged from 81.01% to 108.16%, with coefficients of variation below 12.71%. In addition, the validity and the consistency have been confirmed with a comparison between QB-LFIA and HPLC-MS/MS (R2 = 0.9957). Furthermore, the developed QB-LFIA was employed for the inspection of real products, and several samples were found to be adulterated with lodenafil and methisosildenafil.


Subject(s)
Phosphodiesterase 5 Inhibitors , Quantum Dots , Functional Food , Immunoassay/methods , Phosphodiesterase 5 Inhibitors/chemistry , Quantum Dots/chemistry , Tandem Mass Spectrometry
7.
Pest Manag Sci ; 78(6): 2332-2341, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35246931

ABSTRACT

BACKGROUND: A controlled-release formulation based on mesoporous silica nanoparticles (MSNs) provides an effective way for reducing pesticide use and protecting the ecological environment. In this study, MSNs loaded with pyraclostrobin (PYR@MSNs) were prepared using a one-pot method. RESULTS: The characteristics of PYR@MSNs were systematically investigated, including morphology, loading content, ultraviolet (UV) resistance, release behavior, control effects against pathogens, and safety to nontarget organisms. The results show that the prepared PYR@MSNs presented characteristics of regular spherical shapes, uniform particle size (200 nm), high drug loading (38.9%), and enhanced UV resistance. Compared with traditional formulation, PYR@MSNs exhibited improved control effects against Fusarium graminearum, an extended control period, and lower toxicity to zebrafish, earthworms and BEAS-2B cells. CONCLUSIONS: This research will facilitate the development of efficient and safe pesticide delivery systems. The PYR@MSNs has showed its potential as a new controlled-release formulation with increased efficacy and is expected to benefit the sustainable development of agriculture. © 2022 Society of Chemical Industry.


Subject(s)
Nanoparticles , Pesticides , Animals , Antifungal Agents/pharmacology , Containment of Biohazards , Delayed-Action Preparations , Drug Carriers/chemistry , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry , Strobilurins , Zebrafish
8.
Sci Total Environ ; 800: 149429, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34399342

ABSTRACT

This study aimed to investigate the uptake, translocation, and subcellular distribution of chlorantraniliprole (Cap) and tetrachlorantraniliprole (Tca) in maize (Zea mays L.) plants using a hydroponic experiment. Tca mainly accumulated in the roots and stems, while Cap showed better acropetal translocation capacity than Tca. The uptake of Cap was positively correlated with Tca uptake, particularly at the effect of plant transpiration force. Transpiration inhibitor treatments significantly reduced the acropetal translocation of Cap and Tca. The absorption of Cap and Tca in the dead and fresh roots showed a good linear relationship and mainly occurred via the apoplastic pathway. Regarding subcellular distribution, the cell wall was the dominant storage compartment for Cap and Tca. In the protoplast, Cap mainly accumulated in cell soluble fractions, while Tca accumulated in the organelles. This study provides information for the accurate application of maize pest management and is of great significance to environmental risk and food safety assessments.


Subject(s)
Plant Roots , Zea mays , Biological Transport , Hydroponics , ortho-Aminobenzoates
9.
Int J Biol Macromol ; 183: 1346-1351, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34004200

ABSTRACT

Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "ß" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.


Subject(s)
Bacillus thuringiensis Toxins/immunology , Endotoxins/immunology , Hemolysin Proteins/immunology , Peptide Library , Bacterial Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Humans
10.
Front Chem ; 8: 575, 2020.
Article in English | MEDLINE | ID: mdl-32760698

ABSTRACT

Cyproheptadine hydrochloride (CYP), used as human and veterinary drug, has been used illegally as feed additive for food-producing animals, which could remain in food and jeopardize human health. There is a need for on-site detection of CYP residue in animal-derived food. In this study, a hapten was designed, and a specific monoclonal antibody (mAb) was developed to detect CYP with an IC50 of 1.38 ng/mL and negligible cross-reactivity (CR) for other analogs. Forthermore, a high sensitive immunochromatographic assay (QBs-ICA) was developed using quantum dot nanobeads as reporters. The assay showed the linear detection range (IC20-IC80) of 0.03-0.52 ng/mL, the limit of detection (LOD) and visual detection limit (VDL) reached to 0.01 and 0.625 ng/mL, respectively. Spiked recovery study in pig urine and pork confirmed that the QBs-ICA was applicable for on-site testing. This assay showed better sensitivity and speedy than the reported instrumental analysis and immunoassays.

11.
Appl Microbiol Biotechnol ; 104(17): 7345-7354, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32666189

ABSTRACT

Pyrethroids are insecticides that are widely used in rural and urban areas worldwide. After entering the environment, pyrethroids are rapidly metabolized or degraded by various biological or abiotic methods. In this study, a single-chain variable fragment (scFv) which could simultaneously detect three pyrethroid metabolites was constructed based on a hybridoma raised against 3-phenoxybenzoic acid (3-PBA). By molecular docking, it showed that there were hydrogen bonds, hydrophobic interactions, CH-π interaction, and cation-π interaction between 3-PBA and its scFv. All the contact residues contributing to hydrogen bonds are located in VH-CDR2 or its neighboring region, and two of them were mutants of the closest germline sequence. Based on competitive ELISA, the half maximal inhibitory concentration (IC50) of the scFv for 3-PBA, 3-phenoxybenzaldehyde (PBAld), and 3-phenoxybenzyl alcohol (PBAlc) were calculated to be 0.55, 0.59, and 0.63 µgmL-1, respectively. The scFv also showed 23.91%, 13.41%, 1.15%, 1.00%, and 0.56% cross-reactivity with phenothrin, deltamethrin, fenvalerate, beta-cypermethrin, and fenpropathrin. The broad specificity of the scFv may be due to its hapten design. The scFv could be employed in class-specific immunoassays for pyrethroid metabolites with phenoxybenzyl (PB) group. It is also potentially used for characterizing degradation of pyrethroids or detecting PBAlc (PBAld) alone, and the detection results should be confirmed by other selective methods. KEY POINTS: • A scFv which can simultaneously detect 3-PBA, PBAlc, and PBAld was constructed. • Antibody informatics and binding mode of the scFv were obtained. • The reason for its broad specificity was discussed. • It could be used to monitor single or multi-pyrethroid metabolites with PB group.


Subject(s)
Insecticides , Pyrethrins , Single-Chain Antibodies , Molecular Docking Simulation , Single-Chain Antibodies/genetics
12.
J Agric Food Chem ; 68(27): 7086-7092, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32530611

ABSTRACT

A new type of mesoionic insecticide triflumezopyrim is mainly used to control rice planthoppers, leafhoppers, etc. In order to study the uptake and translocation characteristics of this new insecticide in rice (Oryza sativa), a method for the detection of triflumezopyrim in rice, soil, and water was established using liquid-liquid extraction and QuEChERS sample pretreatment combined with liquid chromatography-triple quadrupole tandem mass spectrometry. The distribution of triflumezopyrim in rice was investigated after hydroponic treatment and foliar treatment at the concentrations of 2.5 and 5 mg·L-1 within the ranges of 24, 48, and 72 h. The results showed that triflumezopyrim could be absorbed by roots and form a systematic distribution in rice by hydroponic treatment; meanwhile, it could also be absorbed by leaves and transported to the bottom leaves under foliar treatment, but no triflumezopyrim was detected in the roots. Thus, triflumezopyrim exhibited high acropetal translocation within the rice plant. This study provides an important scientific basis for the development of an application strategy of triflumezopyrim to control planthoppers and leafhoppers as well as for the residue detection method and safety evaluation.


Subject(s)
Insecticides/metabolism , Oryza/metabolism , Pyridines/metabolism , Pyrimidinones/metabolism , Soil Pollutants/metabolism , Biological Transport , Chromatography, High Pressure Liquid , Hydroponics , Insecticides/analysis , Mass Spectrometry , Oryza/chemistry , Oryza/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Pyridines/analysis , Pyrimidinones/analysis , Soil Pollutants/analysis
13.
Int J Biol Macromol ; 149: 60-69, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31954781

ABSTRACT

There are plenty of applications of Cry1A toxins (Cry1Aa, Cry1Ab, Cry1Ac) in genetically modified crops, and it is necessary to establish corresponding detection methods. In this study, a single-chain variable fragment (scFv) with high affinities to Cry1A toxins was produced. First, the variable regions of heavy (VH) and light chain (VL) were amplified from hybridoma cell 5B5 which secrete anti-Cry1A monoclonal antibody (mAb) and then spliced into scFv-5B5 by overlap extension polymerase chain reaction (SOE-PCR). Subsequently, site-saturation mutagenesis was performed after homology modeling and molecular docking, which showed that asparagine35, phenylalanine36, isoleucine104, tyrosine105, and serine196, respectively, located in VH complementarity-determining region (CDR1 and CDR3) and VL framework region (FR3) were key amino acid sites. Then, the mutagenesis scFv library (1.35 × 105 CFU/mL) was constructed and a mutant scFv-2G12 with equilibrium dissociation constant (KD) value of 9.819 × 10-9 M against Cry1Ab toxin, which was lower than scFv-5B5 (2.025 × 10-8 M) was obtained by biopanning. Then, enzyme-linked immunosorbent assay (ELISA) was established with limit of detection (LOD) and limit of quantitation (LOQ) of 4.6-9.2 and 11.1-17.1 ng mL-1 respectively for scFv-2G12, which were lower than scFv-5B5 (12.4-22.0 and 23.6-39.7 ng mL-1). Results indicated the promising prospect of scFv-2G12 used for the detection of Cry1A toxins.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Bacillus thuringiensis Toxins/chemistry , Endotoxins/chemistry , Gene Library , Hemolysin Proteins/chemistry , Molecular Docking Simulation , Mutagenesis, Site-Directed , Single-Chain Antibodies , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/genetics , Mice , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
14.
Int J Biol Macromol ; 146: 62-69, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31836394

ABSTRACT

Binding to the cadherin in target pests is the primary step in the action mechanism of Cry toxins, but little is known regarding the interaction of Cry1Fa with cadherin. Our previous study suggested that a Plutella xylostella cadherin fragment (PxCad-TBR) can bind to Cry1Fa, while its homologous fragment (HaCad-TBR) in Helicoverpa armigera cannot. In this study, we expressed two cadherin fragments that combine parts of PxCad-TBR and HaCad-TBR in Escherichia coli and tested their binding to the Cry1Fa. The results showed that the fragment containing amino acids T1202-A1341 of P. xylostella cadherin showed binding ability to Cry1Fa. Furthermore, two regions (V1219-E1233 and D1326-F1337) were predicted as hot spot regions that are involved in the interaction of Cry1Fa and PxCad-TBR with computer-aided molecular docking. We then constructed two PxCad-TBR mutations by fragment exchanging based on the molecular docking results and verified the mutations' binding abilities to the Cry1Fa. The results showed that the region that contains amino acids D1326-F1337 was one important binding site to Cry1Fa in P. xylostella cadherin. These results suggested that a combination of computer-aided molecular docking and fragment exchanging is an effective way to locate the key binding sites of Bt toxins in receptors.


Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Cadherins/chemistry , Insect Proteins/chemistry , Molecular Docking Simulation , Moths/chemistry , Animals
15.
J Agric Food Chem ; 67(48): 13237-13246, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31671945

ABSTRACT

The midgut cadherin has been described as one of the main functional receptors for Bacillus thuringiensis (Bt) toxins. Plutella xylostella (P. xylostella) and Helicoverpa armigera (H. armigera) are two major target pests of Bt toxins in China, and the roles of their cadherins in the action of Bt toxins have been only partially studied. Here, we expressed the two cadherins in Sf9 cells and their partial extracellular domains in Escherichia coli and tested them for Bt toxin binding, cellular toxicity, and synergism with toxins. Our results suggested that PxCad might function as a Cry1Ac receptor, although it showed lower binding levels to Cry1Ac and reduced cytotoxicity compared with HaCad. PxCad and HaCad are not receptors for Cry2A, Cry1B, Cry1C, and Cry1F toxins, although some of them can bind to the cadherins. The PxCad-TBR exhibits higher enhancement of Cry1Ac and weak enhancement of Cry1F toxicity in P. xylostella larvae, although it is not the receptor of Cry1F.


Subject(s)
Bacterial Proteins/metabolism , Cadherins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insect Proteins/metabolism , Moths/metabolism , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/toxicity , Cadherins/genetics , Endotoxins/toxicity , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Hemolysin Proteins/toxicity , Insect Proteins/genetics , Larva/drug effects , Larva/metabolism , Moths/drug effects , Moths/genetics
16.
FEBS Open Bio ; 9(9): 1521-1535, 2019 09.
Article in English | MEDLINE | ID: mdl-31237102

ABSTRACT

Circular RNA (circRNA) have long been considered by-products of splicing errors, but the coordination of RNA transcription and exon circularization events remains poorly understood. Here, we investigated this question using genes encoding aminopeptidases N (APNs), which are receptors of Bacillus thuringiensis toxins, in the cotton bollworm, Helicoverpa armigera. We cloned and sequenced the cDNA of ten APN genes (HaAPN1-10) located in the same APN gene cluster, and detected 20 and 14 novel splicing isoforms with exon skipping in HaAPN1 and HaAPN3, respectively, whereas no or very few variants were found in the remaining genes. Further study identified 14 and 6 circular RNA (circRNA) in HaAPN1 and HaAPN3, respectively. Neither novel splicing isoforms nor circRNA were detected in HaAPN2 and HaAPN5. Distinct from the conventional GT/AG splicing signal, short co-directional repeats were involved in the splicing of the linear and circular isoforms of HaAPN1 and HaAPN3. Identification of the splice sites revealed that the linear isoforms may be related in some way to the circularization. Moreover, phylogenetic analysis and detection of circRNA of the APN gene of the diamondback moth, Plutella xylostella (PxAPN3), showed that circRNA formation is relatively conserved during the lepidopteran evolutionary process. These results contribute to an improved understanding of lepidopteran APNs and this novel class of insect circRNA.


Subject(s)
CD13 Antigens/genetics , RNA Splicing/genetics , Animals , CD13 Antigens/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Moths
17.
Anal Biochem ; 567: 1-7, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30130490

ABSTRACT

Cry1Ab has been widely used in genetically modified (GM) crops and its amino acid sequence had high identity to Cry1Ac toxin. Existing nanogold immunochromatographic strips cannot distinguish Cry1Ab from Cry1Ac toxin. In this study, a rapid (5-6 min), qualitative nanogold immunochromatographic strip was successfully developed for the specific detection of Cry1Ab toxin. The assay was based on double antibody sandwich format with the visual detection limit (vLOD) of 0.1 µg mL-1. The results of immunochromatographic assay were all positive validated against the DAS-ELISA (recoveries between 109.6 and 111.8%). In addition, 10%, 5% and 0% error probability results were found in 20 times repeated tests for Cry1Ab concentration of 0.1, 0.2, 0.5 and 1 µg mL-1, respectively, demonstrating the reproducibility of the test strip. Furthermore, the test strip could be stored for 3 months under dry conditions without significant loss of sensitivity. Furthermore, the practical sample analysis results showed that the test strip was able to detect the presence of Cry1Ab in GM materials containing as low as 0.5% MON 810 Bt maize which indicated the practical value of the test strip. To our knowledge, this is the first report on the detection of Cry1Ab by immunochromatographic assay without interference from Cry1Ac toxin.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/analysis , Endotoxins/analysis , Hemolysin Proteins/analysis , Immunoassay/methods , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Bacillus thuringiensis Toxins , Bacterial Proteins/immunology , Endotoxins/immunology , Gold/chemistry , Hemolysin Proteins/immunology , Limit of Detection , Metal Nanoparticles/chemistry , Plants, Genetically Modified/metabolism , Reproducibility of Results , Zea mays/metabolism
18.
Appl Microbiol Biotechnol ; 102(7): 3363-3374, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29484477

ABSTRACT

Single-chain variable fragment (scFv) is a kind of antibody that possess only one chain of the complete antibody while maintaining the antigen-specific binding abilities and can be expressed in prokaryotic system. In this study, scFvs against Cry1 toxins were screened out from an immunized mouse phage displayed antibody library, which was successfully constructed with capacity of 6.25 × 107 CFU/mL. Using the mixed and alternative antigen coating strategy and after four rounds of affinity screening, seven positive phage-scFvs against Cry1 toxins were selected and characterized. Among them, clone scFv-3H9 (MG214869) showing relative stable and high binding abilities to six Cry1 toxins was selected for expression and purification. SDS-PAGE indicated that the scFv-3H9 fragments approximately 27 kDa were successfully expressed in Escherichia coli HB2151 strain. The purified scFv-3H9 was used to establish the double antibody sandwich enzyme-linked immunosorbent assay method (DAS-ELISA) for detecting six Cry1 toxins, of which the lowest detectable limits (LOD) and the lowest quantitative limits (LOQ) were 3.14-11.07 and 8.22-39.44 ng mL-1, respectively, with the correlation coefficient higher than 0.997. The average recoveries of Cry1 toxins from spiked rice leaf samples were ranged from 84 to 95%, with coefficient of variation (CV) less than 8.2%, showing good accuracy for the multi-residue determination of six Cry1 toxins in agricultural samples. This research suggested that the constructed phage display antibody library based on the animal which was immunized with the mixture of several antigens under the same category can be used for the quick and effective screening of generic antibodies.


Subject(s)
Endotoxins/metabolism , Food Microbiology/methods , Peptide Library , Single-Chain Antibodies/isolation & purification , Single-Chain Antibodies/metabolism , Animals , Endotoxins/isolation & purification , Enzyme-Linked Immunosorbent Assay , Mice , Oryza/chemistry
19.
J Agric Food Chem ; 66(4): 950-956, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29293334

ABSTRACT

Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.


Subject(s)
Antibodies, Anti-Idiotypic , Bacterial Proteins/analysis , Bacteriophages , Camelus/immunology , Endotoxins/analysis , Hemolysin Proteins/analysis , Luminescent Measurements/methods , Single-Domain Antibodies , Animals , Antibodies, Monoclonal , Bacillus thuringiensis Toxins , Bacterial Proteins/immunology , Camelus/blood , Edible Grain/chemistry , Endotoxins/immunology , Food Contamination/analysis , Hemolysin Proteins/immunology , Lymphocytes/chemistry , Peptide Library , RNA/isolation & purification , Single-Domain Antibodies/genetics
20.
Anal Biochem ; 531: 60-66, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28527908

ABSTRACT

The detections of Cry1 toxins are mainly dependent on immunoassays based on specific monoclonal antibodies (mAb). In the present study, a mixture immunization with seven Cry1 toxins was administered. The results showed that five mAbs with different characteristics, especially one mAb named 5-E8 which could recognize all the seven Cry1 toxins were obtained. Based on the 5-E8 mAb, a double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA) which can specifically detect the seven Cry1 toxins without cross-reactivity to Cry2A and vip3 was developed with the limit of detection (LOD) and limit of quantification (LOQ) of 6.37-11.35 ng mL-1 and 17.36-24.48 ng mL-1, respectively. The recovery tests showed that the recoveries ranged from 78% to 110% within the quantitation range (LOQ-100 ng mL-1). The established DAS-ELISA can be a useful tool for monitoring the Cry1 toxins in agricultural products. Mixture immunization opens a new path for producing diverse mAbs simultaneously in a single immunization circle.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Bacillus thuringiensis/immunology , Bacterial Proteins/immunology , Endotoxins/immunology , Hemolysin Proteins/immunology , Immunization , Animals , Bacillus thuringiensis Toxins , Female , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...