Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(4): 5415-5428, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123769

ABSTRACT

Dioxins and dioxin-like compounds (DLCs) are common pollutants hazardous to human health. We applied 12 dioxins and DLCs data of 1851 participants (including 484 arthritis patients) from National Health Examination Survey (NHANES) 2001-2004 and quadrupled them into rank variables. Multivariate logistic regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were used to explore the relationship between individual or mixed exposure to the pollutants and arthritis after adjusting for multiple covariates. In multivariable logistic regression with an individual dioxin or DLC, almost every chemical was significantly positively associated with arthritis, except PCB66 (polychlorinated biphenyl 66) and 1,2,3,4,6,7,8-heptachlorodibenzofuran (hpcdf). The WQS model indicated that the combined exposure to the 12 dioxins and DLCs was positively linked to arthritis (OR: 1.884, 95% CI: 1.514-2.346), with PCB156 (weighted 0.281) making the greatest contribution. A positive trend between combined exposure and arthritis was observed in the BKMR model, with a posterior inclusion probability (PIP) of 0.987 for PCB156, which was also higher than the other contaminants.


Subject(s)
Dioxins , Environmental Pollutants , Adult , Humans , Cross-Sectional Studies , Bayes Theorem , Nutrition Surveys
2.
Small Methods ; 6(8): e2200329, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35616183

ABSTRACT

Wet etching of silicon carbide typically exhibits poor etching efficiency and low aspect ratio. In this study, an etching structure that exploits anisotropic charge carrier flow to enable high-throughput, external-bias-free wet etching of high-aspect-ratio SiC micro/nano-structures is demonstrated. Specifically, by applying a catalytic metal coating at the bottom surface of a SiC wafer while introducing patterned ultraviolet light illumination from its top surface, spatial charge separation across the wafer is achieved, i.e., photogenerated electrons are channeled to the bottom to participate in the reduction reaction of an oxidant in the etchant solution, while holes flow to the top to trigger oxidation of SiC and subsequent etching. Such design largely suppresses recombination-induced charge losses, and when used in combination with a top metal catalyst mask, the structure yields a remarkable vertical etching rate of 0.737 µm min-1 and an aspect ratio of 3.2, setting new records for wet-etching methods for SiC.

SELECTION OF CITATIONS
SEARCH DETAIL
...