Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539999

ABSTRACT

Animal tracking is crucial for understanding migration, habitat selection, and behavior patterns. However, challenges in video data acquisition and the unpredictability of animal movements have hindered progress in this field. To address these challenges, we present a novel animal tracking method based on correlation filters. Our approach integrates hand-crafted features, deep features, and temporal context information to learn a rich feature representation of the target animal, enabling effective monitoring and updating of its state. Specifically, we extract hand-crafted histogram of oriented gradient features and deep features from different layers of the animal, creating tailored fusion features that encapsulate both appearance and motion characteristics. By analyzing the response map, we select optimal fusion features based on the oscillation degree. When the target animal's state changes significantly, we adaptively update the target model using temporal context information and robust feature data from the current frame. This updated model is then used for re-tracking, leading to improved results compared to recent mainstream algorithms, as demonstrated in extensive experiments conducted on our self-constructed animal datasets. By addressing specific challenges in animal tracking, our method offers a promising approach for more effective and accurate animal behavior research.

2.
IEEE Trans Cybern ; PP2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988210

ABSTRACT

Existing multiagent exploration works focus on how to explore in the fully cooperative task, which is insufficient in the environment with nonstationarity induced by agent interactions. To tackle this issue, we propose When to Explore (WToE), a simple yet effective variational exploration method to learn WToE under nonstationary environments. WToE employs an interaction-oriented adaptive exploration mechanism to adapt to environmental changes. We first propose a novel graphical model that uses a latent random variable to model the step-level environmental change resulting from interaction effects. Leveraging this graphical model, we employ the supervised variational auto-encoder (VAE) framework to derive a short-term inferred policy from historical trajectories to deal with the nonstationarity. Finally, agents engage in exploration when the short-term inferred policy diverges from the current actor policy. The proposed approach theoretically guarantees the convergence of the Q -value function. In our experiments, we validate our exploration mechanism in grid examples, multiagent particle environments and the battle game of MAgent environments. The results demonstrate the superiority of WToE over multiple baselines and existing exploration methods, such as MAEXQ, NoisyNets, EITI, and PR2.

3.
Materials (Basel) ; 11(11)2018 Oct 27.
Article in English | MEDLINE | ID: mdl-30373246

ABSTRACT

The electrochemical behaviors of Al(III) deposits on Ni substrates were investigated in LiCl-KCl-AlCl3 (2 wt.%) molten salts. Various electrochemical methods, including cyclic voltammetry (CV), square wave voltammetry (SWV), and open circuit chronopotentiometry (OCP) were used to explore the deposition processes of Al(III) on Ni substrates. Five kinds of Al-Ni alloys phase were firstly electrodeposited by the regulation of deposition potential form LiCl-KCl-AlCl3 (2 wt.%) molten salts at 753 K. The formation of Al-Ni alloys, such as AlNi3, Ni5Al3, AlNi, Al3Ni2, and Al3Ni were confirmed by X-ray diffractometer (XRD) and the cross-section morphologies were investigated by scanning electron microscope (SEM). Meanwhile, it was found that the temperature of molten salt was another key parameter for the controlling of alloys phase. No Al-Ni alloys phase other than AlNi3 and Ni5Al3 could be deposited at 703 K.

4.
Nanoscale Res Lett ; 12(1): 501, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28819900

ABSTRACT

In this study, a uniform nanoporous NiO film, with a thickness of up to 2.6 µm, was prepared using polyethylene glycol (PEG). The addition of PEG significantly decreased the cracks in the NiO film and prevented the peeling of the NiO film from a fluorine-doped tin oxide substrate. The NiO cathode was prepared using CdSeS quantum dots (QDs) as the sensitizer, with an optimized photoelectric conversion of 0.80%. The optimized QD-sensitized NiO films were first assembled with the TiO2 anode to prepared QD-sensitized p-n-type tandem solar cells. The open circuit voltage was greater than that obtained using the separated NiO cathode or TiO2 anode.

SELECTION OF CITATIONS
SEARCH DETAIL
...