Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 48(3): 303-309, 2019 05 25.
Article in Chinese | MEDLINE | ID: mdl-31496163

ABSTRACT

OBJECTIVE: To determine the correlation of phosphorylated ribosomal S6 protein (P-S6) content in blood and brain tissue in mice and rats with seizure. METHODS: Seizure models were induced by intraperitoric injection of kainic acid (KA) in C57BL/mice and SD rats. Flow cytometry was used to detect the content of P-S6 in blood; Western blot was used to detect the expression of P-S6 in brain tissues. The correlation between P-S6 expression in blood and in brain tissue was examine by Pearson analysis, and the correlation between P-S6 expression in blood and the severity of seizure was also observed. RESULTS: Western blotting analysis showed that the expression of P-S6 was significantly increased in peripheral blood and brain tissue in mice 1 h after KA-induced seizure,and the expression levels increased to (1.49±0.45) times (P<0.05) and (2.55±0.66) times (P <0.01) of the control group, respectively. Flow cytometry showed that the positive percentage and average fluorescence intensity of P-S6 in the blood of mice increased significantly 1 h after KA-induced seizures (P<0.01), which was consistent with the expression of P-S6 in brain tissue (r=0.8474, P<0.01). Flow cytometry showed that the average fluorescence intensity of P-S6 in blood increased from 14.89±9.75 to 52.35±21.72 (P<0.01) in rats with seizure, which was consistent with the change of P-S6 in brain tissue (r=0.9385, P<0.01). Rats with higher levels of seizure were of higher levels of P-S6 in peripheral blood. CONCLUSIONS: Consistent correlation of P-S6 expression is demonstrated in peripheral blood and in brain tissue after KA-induced seizure, suggesting that the expression of P-S6 in blood can accurately reflect the changes of mTOR signaling pathway in brain tissue.


Subject(s)
Brain , Gene Expression Regulation , Kainic Acid , Seizures , Animals , Brain/drug effects , Brain/physiopathology , Gene Expression Regulation/drug effects , Mice , Mice, Inbred C57BL , Phosphorylation , Rats , Rats, Sprague-Dawley , Seizures/blood , Seizures/chemically induced , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...