Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38798630

ABSTRACT

Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and the recently discovered bacterial CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Current state-of-the-art systems consist of a deactivated-Cas9 nuclease (dCas9) fused to one of several epigenetic effector motifs/domains, along with a guide RNA (gRNA) which defines the genomic target. Such systems have been used to safely and effectively silence or activate a specific gene target under a variety of circumstances. Adeno-associated vectors (AAVs) are the therapeutic platform of choice for the delivery of genetic cargo; however, their small packaging capacity is not suitable for delivery of large constructs, which includes most CRISPR/dCas9-effector systems. To circumvent this, many AAV-based CRISPR/Cas tools are delivered in two pieces, from two separate viral cassettes. However, this approach requires higher viral payloads and usually is less efficient. Here we develop a compact dCas9-based repressor system packaged within a single, optimized AAV vector. The system uses a smaller dCas9 variant derived from Staphylococcus aureus ( Sa ). A novel repressor was engineered by fusing the small transcription repression domain (TRD) from MeCP2 with the KRAB repression domain. The final d Sa Cas9-KRAB-MeCP2(TRD) construct can be efficiently packaged, along with its associated gRNA, into AAV particles. Using reporter assays, we demonstrate that the platform is capable of robustly and sustainably repressing the expression of multiple genes-of-interest, both in vitro and in vivo . Moreover, we successfully reduced the expression of ApoE, the stronger genetic risk factor for late onset Alzheimer's disease (LOAD). This new platform will broaden the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.

2.
Viruses ; 13(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34372494

ABSTRACT

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector's expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Vectors , Lentivirus/genetics , Animals , CRISPR-Associated Protein 9/genetics , Humans , Integrases/metabolism , Mice , Transgenes
3.
STAR Protoc ; 1(3): 100152, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33377046

ABSTRACT

Lentiviral vectors are an ideal gene-delivery system for large gene-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, due to their high packaging capacity and broad tropism. Here, we present a calcium phosphate-based protocol for lentiviral production and concentration for in vitro and in vivo use. This revised procedure has been optimized to ensure high viral titers and transduction efficiency and is scalable to meet specific production needs.


Subject(s)
Genetic Techniques , Genetic Vectors/metabolism , Lentivirus/genetics , HEK293 Cells , Humans , Plasmids/genetics , Transfection , Ultracentrifugation , Virion/metabolism
4.
Hum Mol Genet ; 29(18): 3107-3121, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32954426

ABSTRACT

Alpha-synuclein SNCA has been implicated in the etiology of Parkinson's disease (PD); however, the normal function of alpha-synuclein protein and the pathway that mediates its pathogenic effect is yet to be discovered. We investigated the mechanistic role of SNCA in the nucleus utilizing isogenic human-induced pluripotent stem cells-derived neurons from PD patients with autosomal dominant mutations, A53T and SNCA-triplication, and their corresponding corrected lines by genome- and epigenome-editing. Comparisons of shape and integrity of the nuclear envelope and its resistance to stresses found that both mutations result in similar nuclear envelope perturbations that were reversed in the isogenic mutation-corrected cells. Further mechanistic studies showed that SNCA mutation has adverse effects on the nucleus by trapping Ras-related nuclear protein (RAN) and preventing it from transporting key nuclear proteins such as, DNMT3A, for maintaining normal nuclear function. For the first time, we proposed that α-syn interacts with RAN and normally functions in the nucleocytoplasmic transport while exerts its pathogenic effect by sequestering RAN. We suggest that defects in the nucleocytoplasmic transport components may be a general pathomechanistic driver of neurodegenerative diseases.


Subject(s)
Cell Nucleus/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Cell Line , Cell Nucleus/pathology , DNA Methyltransferase 3A , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...