Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Front Physiol ; 15: 1398904, 2024.
Article in English | MEDLINE | ID: mdl-38915780

ABSTRACT

Arterial compliance (AC) plays a crucial role in vascular aging and cardiovascular disease. The ability to continuously estimate aortic AC or its surrogate, pulse pressure (PP), through wearable devices is highly desirable, given its strong association with daily activities. While the single-site photoplethysmography (PPG)-derived arterial stiffness indices show reasonable correlations with AC, they are susceptible to noise interference, limiting their practical use. To overcome this challenge, our study introduces a noise-resistant indicator of AC: Katz's fractal dimension (KFD) of PPG signals. We showed that KFD integrated the signal complexity arising from compliance changes across a cardiac cycle and vascular structural complexity, thereby decreasing its dependence on individual characteristic points. To assess its capability in measuring AC, we conducted a comprehensive evaluation using both in silico studies with 4374 virtual human data and real-world measurements. In the virtual human studies, KFD demonstrated a strong correlation with AC (r = 0.75), which only experienced a slight decrease to 0.66 at a signal-to-noise ratio of 15dB, surpassing the best PPG-morphology-derived AC measure (r = 0.41) under the same noise condition. In addition, we observed that KFD's sensitivity to AC varied based on the individual's hemodynamic status, which may further enhance the accuracy of AC estimations. These in silico findings were supported by real-world measurements encompassing diverse health conditions. In conclusion, our study suggests that PPG-derived KFD has the potential to continuously and reliably monitor arterial compliance, enabling unobtrusive and wearable assessment of cardiovascular health.

2.
Article in English | MEDLINE | ID: mdl-38758617

ABSTRACT

Cross-domain methods have been proposed to learn the domain invariant knowledge that can be transferred from the source domain to the target domain. Existing cross-domain methods attempt to minimize the distribution discrepancy of the domains. However, these methods fail to explore the domain invariant subspace due to the samples of different classes between two domains may overlap in the new subspace. They consider the features in the original space data that may be unnecessary or irrelevant to the final classification, and neglect to preserve the local manifold structure between two domains. To solve these problems, a novel feature extraction method called Locality Cross-domain Discriminant Analysis (LCDA) is proposed. LCDA first aligns the distributions and avoids overlap between two domains. Then, LCDA exploits the local manifold structure to maintain the discriminative capability of the low-dimensional projection matrices. Finally, a robust constraint is utilized to preserve the robustness of the projection matrices. The proposed LCDA not only avoids overlap between different classes but also explores the local manifold information. Experiment results on the medical membranous nephropathy hyperspectral dataset demonstrate that the proposed LCDA has better performance than other relevant feature extraction methods.

3.
Nat Commun ; 15(1): 2906, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575578

ABSTRACT

Mechano-sensitive hair-like sensilla (MSHS) have an ingenious and compact three-dimensional structure and have evolved widely in living organisms to perceive multidirectional mechanical signals. Nearly all MSHS are iontronic or electronic, including their biomimetic counterparts. Here, an all-optical mechano-sensor mimicking MSHS is prototyped and integrated based on a thin-walled glass microbubble as a flexible whispering-gallery-mode resonator. The minimalist integrated device has a good directionality of 32.31 dB in the radial plane of the micro-hair and can detect multidirectional displacements and forces as small as 70 nm and 0.9 µN, respectively. The device can also detect displacements and forces in the axial direction of the micro-hair as small as 2.29 nm and 3.65 µN, respectively, and perceive different vibrations. This mechano-sensor works well as a real-time, directional mechano-sensory whisker in a quadruped cat-type robot, showing its potential for innovative mechano-transduction, artificial perception, and robotics applications.


Subject(s)
Robotics , Sensilla , Animals , Hair , Mechanical Phenomena , Electronics
4.
Colloids Surf B Biointerfaces ; 238: 113874, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581833

ABSTRACT

The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents , Cadmium Compounds , Escherichia coli , Microbial Sensitivity Tests , Staphylococcus aureus , Sulfides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Sulfides/chemistry , Sulfides/pharmacology , Cadmium Compounds/chemistry , Cadmium Compounds/pharmacology , Drug Resistance, Bacterial/drug effects , Biofilms/drug effects , Particle Size , Humans , Surface Properties , Nanostructures/chemistry
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 152-159, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38403616

ABSTRACT

A miniaturized, low-cost high-intensity focused ultrasound device is developed for the problems of cross-contamination and uneven sample fragmentation in conventional ultrasound devices. This device generates ultrasonic waves through a concave spherical self-focusing piezoelectric ceramic piece, and creates a cavitation effect in the focusing area to achieve sample fragmentation. The feasibility of the device is demonstrated by physical simulation, then a driving circuit with adjustable power is designed and manufactured to generate 0 ~ 22.4 W acoustic power, and finally paraffin-embedded sample dewaxing experiments are performed to verify the validation of the device. The experimental results show that the dewaxing efficiency and safety of the high-intensity focused ultrasound device is significantly better than those of traditional chemical methods, and this device is comparable with commercial ultrasonic instruments. In summary, the high-intensity focused ultrasound device is expected to be applied in automated nucleic acid extraction and purification equipment and has a broad application prospect in the field of sample pre-processing.


Subject(s)
Acoustics , Equipment Design , Computer Simulation
6.
Acta Biomater ; 174: 281-296, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37951519

ABSTRACT

RNA interference (RNAi) presents great potential against intractable liver diseases. However, the establishment of specific, efficient, and safe delivery systems targeting hepatocytes remains a great challenge. Herein, we described a promising hepatocytes-targeting system through integrating triantennary N-acetylgalactosamine (GalNAc)-engineered cell membrane with biodegradable mesoporous silica nanoparticles, which efficiently and safely delivered siRNA to hepatocytes and silenced the target PCSK9 gene expression for the treatment of non-alcoholic fatty liver disease. Having optimized the GalNAc-engineering strategy, insertion orders, and cell membrane source, we obtained the best-performing GalNAc-formulations allowing strong hepatocyte-specific internalization with reduced Kupffer cell capture, resulting in robust gene silencing and less hepatotoxicity when compared with cationic lipid-based GalNAc-formulations. Consequently, a durable reduction of lipid accumulation and damage was achieved by systemic administering siRNAs targeting PCSK9 in high-fat diet-fed mice, accompanied by displaying desirable safety profiles. Taken together, this GalNAc-engineering biomimetics represented versatile, efficient, and safe carriers for the development of hepatocyte-specific gene therapeutics, and prevention of metabolic diseases. STATEMENT OF SIGNIFICANCE: Compared to MSN@LP-GN3 (MC3-LNP), MSN@CM-GN3 exhibited strong hepatocyte targeting and Kupffer cell escaping, as well as good biocompatibility for safe and efficient siRNA delivery. Furthermore, siPCSK9 delivered by MSN@CM-GN3 reduced both serum and liver LDL-C, TG, TC levels and lipid droplets in HFD-induced mice, resulting in better performance than MSN/siPCSK9@LP-GN3 in terms of lipid-lowering effect and safety profiles. These findings indicated promising advantages of our biomimetic GN3-based systems for hepatocyte-specific gene delivery in chronic liver diseases. Our work addressed the challenges associated with the lower targeting efficiency of cell membrane-mimetic drug delivery systems and the immunogenicity of traditional GalNAc delivery systems. In conclusion, this study provided an effective and versatile approach for efficient and safe gene editing using ligand-integrated biomimetic nanoplatforms.


Subject(s)
Non-alcoholic Fatty Liver Disease , Proprotein Convertase 9 , Mice , Animals , RNA Interference , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/pharmacology , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Biomimetics , Hepatocytes/metabolism , Liver/metabolism , RNA, Small Interfering/pharmacology , Lipids/pharmacology
7.
Entropy (Basel) ; 25(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38136462

ABSTRACT

Wearable technologies face challenges due to signal instability, hindering their usage. Thus, it is crucial to comprehend the connection between dynamic patterns in photoplethysmography (PPG) signals and cardiovascular health. In our study, we collected 401 multimodal recordings from two public databases, evaluating hemodynamic conditions like blood pressure (BP), cardiac output (CO), vascular compliance (C), and peripheral resistance (R). Using irregular-resampling auto-spectral analysis (IRASA), we quantified chaotic components in PPG signals and employed different methods to measure the fractal dimension (FD) and entropy. Our findings revealed that in surgery patients, the power of chaotic components increased with vascular stiffness. As the intensity of CO fluctuations increased, there was a notable strengthening in the correlation between most complexity measures of PPG and these parameters. Interestingly, some conventional morphological features displayed a significant decrease in correlation, indicating a shift from a static to dynamic scenario. Healthy subjects exhibited a higher percentage of chaotic components, and the correlation between complexity measures and hemodynamics in this group tended to be more pronounced. Causal analysis showed that hemodynamic fluctuations are main influencers for FD changes, with observed feedback in most cases. In conclusion, understanding chaotic patterns in PPG signals is vital for assessing cardiovascular health, especially in individuals with unstable hemodynamics or during ambulatory testing. These insights can help overcome the challenges faced by wearable technologies and enhance their usage in real-world scenarios.

8.
Opt Lett ; 48(22): 5935-5938, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966756

ABSTRACT

We present the design and fabrication of an on-chip FBG interrogator based on arrayed waveguide grating (AWG) technology. The spectral overlap between adjacent channels in the integrated AWG is significantly enhanced through a combination approach involving the reduction of the output waveguide spacing and an increase in the input waveguide width. As a result of these design choices, our AWG demonstrates excellent spectral consistency, with spectral cross talk exceeding 30 dB. The interrogator seamlessly combining optical and circuitry components achieves full integration and enables a wide range of interrogation wavelengths, including C-band and L-band. With an interrogation range extending up to 80 nm, it theoretically has the capacity to simultaneously interrogate the wavelengths of 20 FBG sensors. Experimental findings demonstrate an absolute interrogation accuracy of less than 2 pm for the fully integrated interrogator. With its compact size, cost-effectiveness, exceptional precision, and ease of integration, the proposed interrogator holds a substantial promise for widespread application in the realm of FBG sensing.

9.
Bioengineering (Basel) ; 10(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37760181

ABSTRACT

Quadrupole mass spectrometers (QMS) are widely used for clinical diagnosis and chemical analysis. To obtain the best experimental results, mass spectrometers must be calibrated to an ideal setting before use. However, tuning the current QMS is challenging. Traditional tuning techniques possess low automation levels and rely primarily on skilled engineers. Therefore, in this study, we propose an innovative auto-tuning algorithm for QMS based on the improved particle swarm optimization (PSO) algorithm to automatically find the optimal solution of QMS parameters and make the QMS reach the optimal state. The improved PSO algorithm is combined with simulated annealing, multiple inertia weights, dynamic boundaries, and other methods to prevent the traditional PSO algorithm from the issue of a local optimal solution and premature convergence. According to the characteristics of the mass spectrum peaks, a termination function is proposed to simplify the termination conditions of the PSO algorithm and further improve the automation level of the mass spectrometer. The results of auto-calibration testing of resolution and mass axis show that both resolution and mass axis calibration could effectively meet the requirements of mass spectrometry experiments. By the experiment of auto-optimization testing of lens and ion source parameters, these parameters were all in the vicinity of the optimal solution, which achieved the expected performance. Through numerous experiments, the reproducibility of the algorithm was established as meeting the auto-tuning function of the QMS. The proposed method can automatically tune the mass spectrometer from its non-optimal condition to the optimal one, which can effectively reduce the tuning difficulty of QMS.

10.
Front Physiol ; 14: 1187561, 2023.
Article in English | MEDLINE | ID: mdl-37745247

ABSTRACT

Objective: The temporal complexity of photoplethysmography (PPG) provides valuable information about blood pressure (BP). In this study, we aim to interpret the stochastic PPG patterns with a model-based simulation, which may help optimize the BP estimation algorithms. Methods: The classic four-element Windkessel model is adapted in this study to incorporate BP-dependent compliance profiles. Simulations are performed to generate PPG responses to pulse and continuous stimuli at various timescales, aiming to mimic sudden or gradual hemodynamic changes observed in real-life scenarios. To quantify the temporal complexity of PPG, we utilize the Higuchi fractal dimension (HFD) and autocorrelation function (ACF). These measures provide insights into the intricate temporal patterns exhibited by PPG. To validate the simulation results, continuous recordings of BP, PPG, and stroke volume from 40 healthy subjects were used. Results: Pulse simulations showed that central vascular compliance variation during a cardiac cycle, peripheral resistance, and cardiac output (CO) collectively contributed to the time delay, amplitude overshoot, and phase shift of PPG responses. Continuous simulations showed that the PPG complexity could be generated by random stimuli, which were subsequently influenced by the autocorrelation patterns of the stimuli. Importantly, the relationship between complexity and hemodynamics as predicted by our model aligned well with the experimental analysis. HFD and ACF had significant contributions to BP, displaying stability even in the presence of high CO fluctuations. In contrast, morphological features exhibited reduced contribution in unstable hemodynamic conditions. Conclusion: Temporal complexity patterns are essential to single-site PPG-based BP estimation. Understanding the physiological implications of these patterns can aid in the development of algorithms with clear interpretability and optimal structures.

11.
J Pharm Biomed Anal ; 234: 115479, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37454502

ABSTRACT

Circulating tumor cells (CTCs) are important prognostic markers for cancer diagnosis and metastasis, and their detection is an important means to detect cancer metastasis. Herein, we construct a novel bifunctional electrochemical biosensor based on the PB-MXene composite films. A simple electrostatic self-assembly approach was employed to prepare a film composed of PB nanocubes on the MXene substrates. Given that the PB is an artificial peroxidase for H2O2 sensing, the PB-MXene films can realize the real-time monitoring of H2O2 secretion from living CTCs. Besides, the anti-CEA attached biosensors can be utilized to quantify the corresponding CTCs. The synergic effects of the MXene with a large specific area and PB with enzyme-free catalysis for H2O2 resulted in PB-MXene films exhibiting high electrocatalytic and low cytotoxicity for both H2O2 sensing and living CTCs capturing. As a result, the biosensor shows a low detection limit of 0.57 µM towards H2O2 with a wide linear range (1 µM to 500 µM), as well as an excellent sensing performance for CTCs (an extremely low detection limit of 9 cells/mL in a wide linear range of 1.3 ×101 to 1.3 ×106 cells/mL). Moreover, the prepared biosensor showed satisfactory stability and anti-interference ability for potential applications in clinical cancer diagnosis and tumor metastasis.


Subject(s)
Biosensing Techniques , Neoplasms , Electrochemical Techniques/methods , Hydrogen Peroxide , Biosensing Techniques/methods , Enzymes, Immobilized
12.
RSC Adv ; 13(27): 18443-18449, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37342808

ABSTRACT

Targeting the functional groups present in analytes by nanozyme-catalyzed systems is a promising strategy to construct sensitive and selective platforms for the sensing of specific analytes. Herein, various groups (-COOH, -CHO, -OH, and -NH2) on benzene were introduced in an Fe-based nanozyme system with MoS2-MIL-101(Fe) as the model peroxidase nanozyme, H2O2 as the oxidizing agent, and TMB as the chromogenic substrate, and the effects of these groups at both a low concentration and high concentration were further investigated. It was found that the hydroxyl group-based substance catechol showed an "on" effect at a low concentration to increase the catalytic rate and enhance the absorbance signal, whereas an "off" effect at a high concentration with a decreased absorbance signal. Based on these results, the "on" mode and "off" mode for the biological molecule dopamine, a type of catechol derivative, were proposed. In the control system, MoS2-MIL-101(Fe) catalyzed the decomposition of H2O2 to produce ROS, which further oxidized TMB. In the "on" mode, the hydroxyl groups of dopamine could combine with the Fe(iii) site of the nanozyme to lower its oxidation state, resulting in higher catalytic activity. In the "off" mode, the excess dopamine could consume ROS, which inhibited the catalytic process. Under the optimal conditions, by balancing the "on" and "off" modes, the "on" mode for the detection of dopamine was found to have better sensitivity and selectivity. The LOD was as low as 0.5 nM. This detection platform was successfully applied for the detection of dopamine in human serum with satisfactory recovery. Our results can pave the way for the design of nanozyme sensing systems with sensitivity and selectivity.

13.
Analyst ; 148(10): 2375-2386, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37129055

ABSTRACT

Carbon dots (CDs) with red fluorescence emission are highly desirable for use in bioimaging and trace- substance detection, with potential applications in biotherapy, photothermal therapy, and tumor visualization. Most CDs emit green or blue fluorescence, thus limiting their applicability. We report a novel fluorescent detection platform based on high-brightness red fluorescence emission carbon dots (R-CDs) co-doped with nitrogen and bromine, which exhibit pH and oxidized L-glutathione (GSSG) dual-responsive characteristics. The absolute quantum yield of the R-CDs was as high as 11.93%. We discovered that the R-CDs were able to detect acidic pH in live cells and zebrafish owing to protonation and deprotonation. In addition, GSSG was detected in vitro over a broad linear range (8-200 µM) using the R-CDs with excitation-independent emission. Furthermore, cell imaging and bioimaging experiments demonstrated that the R-CDs were highly cytocompatible and could be used as fluorescent probes to target lysosomes and nucleolus. These studies highlight the promising prospects of R-CDs as biosensing tools for bioimaging and trace-substance detection applications.


Subject(s)
Quantum Dots , Animals , Glutathione Disulfide , Quantum Dots/chemistry , Carbon/chemistry , Zebrafish , Fluorescent Dyes/chemistry , Nitrogen/chemistry , Hydrogen-Ion Concentration
14.
Analyst ; 148(11): 2564-2572, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37158319

ABSTRACT

ß-Carotene is a natural antioxidant that has an indispensable effect on the growth and immunity of the human body. For intracellular and in vitro detection of ß-carotene, N-doped carbon quantum dots (O-CDs) were prepared by co-heating carbonization of 1,5-naphthalenediamine and nitric acid in ethanol solvent for 2 h at 200 °C. O-CDs have longer wavelength orange light emission, with an optimal excitation peak of 470 nm and an optimal emission peak of 590 nm. According to the principle of the internal filtering effect on which the detection system is based, O-CDs present a good linear relationship with ß-carotene within a wide range of 0-2000 µM, and the R2 coefficient of the linear regression equation is 0.999. In addition, O-CDs showed targeting of lysosomes in cell imaging and could be used to detect intracellular lysosomal movement. These experiments show that O-CDs can be used for in vivo and in vitro detection of ß-carotene and can serve as a potential substitute to commercial lysosome targeting probes.


Subject(s)
Quantum Dots , beta Carotene , Humans , Carbon , Nitrogen , Fluorescent Dyes , Diagnostic Imaging
15.
Sensors (Basel) ; 23(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050576

ABSTRACT

Exosomes derived from cancer cells have been recognized as a promising biomarker for minimally invasive liquid biopsy. Herein, a novel sandwich-type biosensor was fabricated for highly sensitive detection of exosomes. Amino-functionalized Fe3O4 nanoparticles were synthesized as a sensing interface with a large surface area and rapid enrichment capacity, while two-dimensional MXene nanosheets were used as signal amplifiers with excellent electrical properties. Specifically, CD63 aptamer attached Fe3O4 nanoprobes capture the target exosomes. MXene nanosheets modified with epithelial cell adhesion molecule (EpCAM) aptamer were tethered on the electrode surface to enhance the quantification of exosomes captured with the detection of remaining protein sites. With such a design, the proposed biosensor showed a wide linear range from 102 particles µL-1 to 107 particles µL-1 for sensing 4T1 exosomes, with a low detection limit of 43 particles µL-1. In addition, this sensing platform can determine four different tumor cell types (4T1, Hela, HepG2, and A549) using surface proteins corresponding to aptamers 1 and 2 (CD63 and EpCAM) and showcases good specificity in serum samples. These preliminary results demonstrate the feasibility of establishing a sensitive, accurate, and inexpensive electrochemical sensor for detecting exosome concentrations and species. Moreover, they provide a significant reference for exosome applications in clinical settings, such as liquid biopsy and early cancer diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Nanoparticles , Humans , Exosomes/chemistry , Epithelial Cell Adhesion Molecule/metabolism , Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection , Aptamers, Nucleotide/chemistry
16.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047789

ABSTRACT

Nowadays, bacterial infections are attracting great attention for the research and development of new antimicrobial agents. As one of the quinolones, ciprofloxacin (CI) has a broad-spectrum, strong antibacterial effect. However, the clinical use of ciprofloxacin is limited by drug resistance. Ciprofloxacin carbon dots (CCDs) with enhanced antibacterial activity and copper-doped ciprofloxacin carbon dots (Cu-CCDs) were synthesized by a simple hydrothermal method. The results of structural analysis and antibacterial experiments show that CCDs and Cu-CCDs have effective antibacterial properties by retaining the active groups of ciprofloxacin (-COOH, C-N, and C-F), and Cu-CCDs doped with copper have a better antibacterial effect. In addition, experiments have shown that Cu-CCDs show excellent antibacterial activity against E. coli and S. aureus and have good biocompatibility, which indicates that they have great prospects in clinical applications. Therefore, novel modified copper CCDs with broad-spectrum antibacterial activity, which can be used as antibacterial nanomaterials for potential applications in the field of antibacterial drugs, were synthesized in this study.


Subject(s)
Carbon , Ciprofloxacin , Ciprofloxacin/pharmacology , Carbon/chemistry , Staphylococcus aureus , Copper/pharmacology , Escherichia coli , Anti-Bacterial Agents/chemistry
17.
Talanta ; 254: 124126, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36446156

ABSTRACT

Long period fiber gratings (LPFGs) have special advantages in the detection of salt concentrations due to small volume, corrosion resistance and immunity to electromagnetic interference. However, it is very difficult to distinguish low-concentration salt solutions with usual LPFGs owing to the poor sensitivity. In this paper, the detection capability of the LPFG to low-concentration salt solutions was significantly improved by assembling salt-containing poly (diallyldimethylammonium chloride) (PDDA) and salt-containing poly (sodium-p-styrenesulfonate) (PSS). Experimental results showed that, the responsive wavelength range of the LPFG was remarkably broadened in low-concentration salt solutions after assembling nanofilms. The suitable detection range of the PDDA/PSS films coated LPFG for salt concentrations was 0-3%. In such a range, the average refractive index sensitivity and the average salinity sensitivity of the LPFG was as high as 29545.9 nm/RIU and 52.2 nm/% respectively. Compared with the LPFG without nanofilms, the discrimination ability of the PDDA/PSS films coated LPFG to 0-3% salt solutions increased by 568 times. The analysis demonstrated that PDDA and salt in the assembly solutions played a pivotal role in the above effects. The proposed sensor has extensive application prospects in the monitoring of salt concentration in many fields such as seawater, food processing, fermentation process, etc.


Subject(s)
Refractometry , Sodium Chloride
18.
Adv Healthc Mater ; 12(5): e2202064, 2023 02.
Article in English | MEDLINE | ID: mdl-36416257

ABSTRACT

Although targeted delivery of nanoparticulate vaccines to dendritic cells (DCs) holds tremendous potential, it still faces insufficient internalization and endosome degradation via the receptor-mediated endocytosis pathway. Inspired by the advantages of CXC-chemokine receptor type 4 (CXCR4)-mediated macropinocytosis in the internalization of DCs, a multifunctional vaccine is constructed based on a reactive oxygen species (ROS)-responsive nanoparticulate core and macropinocytosis-inducing peptide-fused cancer membrane shell, allowing the direct cytosolic delivery of cancer membrane-associated antigen and a stimulator of interferon genes (STING) agonist, cGAMP for highly efficient cancer immunotherapy. The biomimetic nanovaccines show a dramatically enhanced cellular uptake by DCs via CXCR4-mediated macropinocytosis. Such a direct delivery process promotes cytosolic release of cGAMP in response to ROS, and together promoted DC maturation and T cell priming by activating the STING pathway. Consequently, the biomimetic nanovaccines not only result in a great tumor rejection in prophylactic B16-F10 melanoma murine model, but also markedly suppress the growth of established melanoma tumors when combined with anti-PD-1 checkpoint blockade. This study advances the design of biomimetic nanovaccines and provides a promising strategy for macropinocytosis-mediated cancer vaccination.


Subject(s)
Cancer Vaccines , Melanoma, Experimental , Humans , Animals , Mice , Receptors, CXCR4/metabolism , Biomimetics , Reactive Oxygen Species/metabolism , Dendritic Cells/metabolism , Immunotherapy , Mice, Inbred C57BL
19.
Front Bioeng Biotechnol ; 11: 1308725, 2023.
Article in English | MEDLINE | ID: mdl-38169725

ABSTRACT

Introduction: Pregnanediol-3-glucuronide (PdG), as the main metabolite of progesterone in urine, plays a significant role in the prediction of ovulation, threatened abortion, and menstrual cycle maintenance. Methods: To achieve a rapid and sensitive assay, we have designed a competitive model-based time-resolved fluorescence microsphere-lateral flow immunochromatography (TRFM-LFIA) strip. Results: The optimized TRFM-LFIA strip exhibited a wonderful response to PdG over the range of 30-2,000 ng/mL, the corresponding limit of detection (LOD) was calculated as low as 8.39 ng/mL. More importantly, the TRFM-LFIA strip was innovatively used for the quantitative detection of PdG in urine sample, and excellent recovery results were also obtained, ranging from 97.39% to 112.64%. Discussion: The TRFMLFIA strip possessed robust sensitivity and selectivity in the determination of PdG, indicating the great potential of being powerful tools in the biomedical and diagnosis region.

20.
RSC Adv ; 12(52): 33761-33771, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36505714

ABSTRACT

Tetracyclines (TCs) prevent the growth of peptide chains and the synthesis of proteins, and they are widely used to inhibit Gram-positive and -negative bacteria. For the detection of tetracyclines in cell and in vitro, a convenient and simple detection system based on nitrogen-doped cyan carbon quantum dots (C-CQDs) was developed. C-CQDs have excellent excitation-independent properties, the best optimal excitation peak is 360 nm and the best emission peak is 480 nm. Based on the inner filter effect (IFE), the fluorescence intensity of C-CQDs in solution decreases with the increase of tetracyclines. In the range of 0-100 µM, C-CQDs present a good linear relationship with three tetracyclines (CTC, TET, OCT), with R 2 all greater than 0.999. C-CQDs can detect tetracycline in milk samples with recovery in the range of 98.2-103.6%, which demonstrates their potential and broad application in real samples. Furthermore, C-CQDs exhibit excellent lysosomal targeting, as indicated by a Pearson's coefficient of 0.914 and an overlap of 0.985. The internalisation of C-CQDs was mainly affected by lipid raft-mediated endocytosis in endocytic pathway experiments. These experiments indicate that C-CQDs can be effectively used to detect TC content and target lysosomes as an alternative to commercial dyes.

SELECTION OF CITATIONS
SEARCH DETAIL
...