Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Ren Fail ; 46(2): 2357746, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832498

ABSTRACT

Numerous studies have revealed a correlation between the risk of developing diabetic nephropathy (DN) and the gut microbiota (GM) composition. However, it remains uncertain whether the GM composition causes DN. We aimed to explore any potential causal links between the GM composition and the risk of developing DN. A meta-analysis conducted by the MiBioGen consortium of the largest genome-wide association study (GWAS) provided aggregated data on the GM. DN data were obtained from the IEU database. The inverse-variance weighting (IVW) method was employed as the primary analytical approach. The IVW analysis indicated that genus Dialister (OR = 0.51, 95% CI: 0.34-0.77, p = 0.00118) was protective against DN. In addition, class Gammaproteobacteria (OR = 0.47, 95% CI: 0.27-0.83, p = 0.0096), class Lentisphaeria (OR =0.76, 95% CI: 0.68-0.99, p = 0.04), order Victivallales (OR = 0.76, 95% CI: 0.58-0.99, p = 0.04), and phylum Proteobacteria (OR = 0.53, 95% CI: 0.33-0.85, p = 0.00872) were negatively associated with the risk of developing DN. Genus LachnospiraceaeUCG008 (OR =1.45, 95% CI: 1.08-1.95, p = 0.01), order Bacteroidales (OR = 1.59, 95% CI: 1.02-2.49, p = 0.04), and genus Terrisporobacter (OR = 1.98, 95% CI: 1.14-3.45, p = 0.015) were positively associated with the risk of developing DN. In this study, we established a causal relationship between the genus Dialister and the risk of developing DN. Further trials are required to confirm the protective effects of probiotics on DN and to elucidate the precise protective mechanisms involving genus Dialister and DN.


Subject(s)
Diabetic Nephropathies , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Diabetic Nephropathies/microbiology , Gastrointestinal Microbiome/genetics
2.
Sci Total Environ ; 929: 172498, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38657805

ABSTRACT

The drugs and personal care products in water sources are potential threats to the ecological environment and drinking water quality. In recent years, the presence of PPCPs has been detected in multiple drinking water sources in China. PPCPs are usually stable and resistant to degradation in aquatic environments. During chlorination, chloramination, and ozonation disinfection processes, PPCPs can act as precursor substances to generate N-nitrosodimethylamine (NDMA) which is the most widely detected nitrosamine byproduct in drinking water. This review provides a comprehensive overview of the impact of PPCPs in China's water environment on the generation of NDMA during disinfection processes to better understand the correlation between PPCPs and NDMA generation. Chloramine is the most likely to form NDMA with different disinfection methods, so chloramine disinfection may be the main pathway for NDMA generation. Activated carbon adsorption and UV photolysis are widely used in the removal of NDMA and its precursor PPCPs, and biological treatment is found to be a low-cost and high removal rate method for controlling the generation of NDMA. However, there are still certain regional limitations in the investigation and research on PPCPs, and other nitrosamine by-products such as NMEA, NDEA and NDBA should also be studied to investigate the formation mechanism and removal methods.


Subject(s)
Dimethylnitrosamine , Disinfection , Water Pollutants, Chemical , Water Purification , China , Disinfection/methods , Water Purification/methods , Water Pollutants, Chemical/analysis , Dimethylnitrosamine/analysis , Drinking Water/chemistry , Disinfectants/analysis
3.
Plant Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687576

ABSTRACT

In May of 2020, November of 2021 and May of 2022, a preharvest fruit rot with white mycelia was observed inside and outside of the fruits of thick skin muskmelon (Cucumis melo L.) growing in about ten greenhouses (each greenhouse had about 320 muskmelons) with disease incidence of 70% in Ningbo, Zhejiang Province of China. In order to identify the causal agent, plant tissues from the margin of the symptomatic tissue were sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al 2019), and then placed on potato dextrose agar (PDA) plates containing streptomycin sulfate (100 µg/mL) at 25℃ for 4 days. Only Fusarium colonies were isolated from all the plant tissues. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Six fungal isolates (Fi-1~6) were obtained. The average radial mycelial growth rate of Fusarium isolate Fi-3 was 4.6 mm/day at 25℃ in the dark on PDA, and like other five isolates. The colonies are abnormal, producing lots of aerial hyphae, each isolate was white to light orange. Isolate Fi-3 produced macroconidia with 4 to 6 septa, tapered with pronounced dorsiventral curvature and measured 21 to 30 µm long 4 to 5 µm wide on Spezieller Nährstoffarmer Agar (SNA) medium at 25℃ for 10 days (Leslie and Summerell 2006), but polyphialides and chlamydospores were still not available for 30 days. The pathogen species was further identified by translation elongation factor-1 alpha (EF-1α) sequencing. The EF-1α of six isolates were sequenced, and their EF-1α sequences were 100% identical to each other, and the sequence of strain Fi-3 was deposited in GenBank with accession no. OL782040 and was also compared with sequences in the FUSARIUM-ID database (Geiser et al. 2004), which indicated that it was 100% identical to those of F. pernambucanum strain NRRL 32864 (GenBank accession GQ505613), F. pernambucanum strain LC7040 (GenBank accession MK289626), and F. pernambucanum strain LC12149 (GenBank accession MK289588) within the Fusarium incarnatum - F. equiseti species complex 17 (FIESC17). Two phylogenetic trees were established based on the TEF1-α sequences of Fi-1~6 and other Fusarium spp., Fi-1~6 was clustered with the sequences of F. pernambucanum within the FIESC17. Thus, both morphological and molecular criteria supported identification of the strain as F. pernambucanum. A pathogenicity test was conducted to verify Koch's postulates, mycelium agar plugs (6 mm in diameter) were removed from the colony margin of a 3-day-old culture of strain Fi-3, healthy melon fruits were surface-sterilized with 70% ethanol and rinsed twice with sterile-distilled water. Then, the melons were wounded using a sterile inoculating needle to stab and inoculated by a mycelium agar plug of strain Fi-3 on the wound sites. 5 fruits were inoculated in each treatment, and a mycelium-free PDA plug was used as a negative control, repeated 3 times, at 25℃ with high relative humidity for 10 days. The results show disease symptoms similar to those naturally infected fruits on all inoculated melon fruits. The fungus re-isolated from the diseased fruits, showed the same colony morphology as the original isolate. Koch's postulates were repeated three times with the same results. Strain Fi-3 inoculated fruits without wounding remained healthy. To our knowledge, this is the first report of fruit rot of melon caused by F. pernambucanum in China.

4.
ACS Omega ; 9(9): 10459-10467, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463255

ABSTRACT

Collisions between particles or with a surface have been widely applied, in which the restitution coefficients are the important parameter to describe the particle rebound behavior. SiO2 particles are often used instead of ash particles in theoretical analyses; however, whether this is justifiable has not been confirmed. This paper compares the rebound characteristics of oblique impact for SiO2 particles and ash particles by experimental and theoretical analyses. Based on the rigid-body theory, the tangential restitution coefficients, rebound angle-particle center, and reflection angle-contact path predicted by SiO2 particles are basically in agreement with the experimental results for ash particles, especially at large impact angles. However, there is a slight error at 2.2 m/s as the velocity approaches the critical capture velocity.

5.
Sci Bull (Beijing) ; 69(6): 792-802, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38245448

ABSTRACT

Silk is one of the toughest fibrous materials known despite spun at ambient temperature and pressure with water as a solvent. It is a great challenge to reproduce high-performance artificial fibers comparable to natural silk by bionic for the incomplete understanding of silkworm spinning in vivo. Here, we found that amphipol and digitonin stabilized the structure of natural silk fibroin (NSF) by a large-scale screening in vitro, and then studied the close-to-native ultrastructure and hierarchical assembly of NSF in the silk gland lumen. Our study showed that NSF formed reversible flexible nanofibrils mainly composed of random coils with a sedimentation coefficient of 5.8 S and a diameter of about 4 nm, rather than a micellar or rod-like structure assembled by the aggregation of globular NSF molecules. Metal ions were required for NSF nanofibril formation. The successive pH decrease from posterior silk gland (PSG) to anterior silk gland (ASG) resulted in a gradual increase in NSF hydrophobicity, thus inducing the sol-gelation transition of NSF nanofibrils. NSF nanofibrils were randomly dispersed from PSG to ASG-1, and self-assembled into anisotropic herringbone patterns at ASG-2 near the spinneret ready for silkworm spinning. Our findings reveal the controlled self-assembly mechanism of the multi-scale hierarchical architecture of NSF from nanofibrils to herringbone patterns programmed by metal ions and pH gradient, which provides novel insights into the spinning mechanism of silk-secreting animals and bioinspired design of high-performance fibers.


Subject(s)
Bombyx , Fibroins , Animals , Bombyx/chemistry , Silk/chemistry , Fibroins/chemistry , Solvents , Metals , Hydrogen-Ion Concentration
6.
Dig Dis ; 42(3): 230-239, 2024.
Article in English | MEDLINE | ID: mdl-38295774

ABSTRACT

INTRODUCTION: Gastric cancer (GC) remains a global health challenge, and H. pylori infection is a main risk factor for noncardia GC. The present study aimed to investigate the association between single nucleotide polymorphisms (SNPs) in mammalian sterile 20-like kinase 1 (MST1) and MST2, H. pylori (H. pylori) infection, and the risk of noncardia gastric cancer (GC). METHODS: A case-control study was conducted using enzyme-linked immunosorbent assay (ELISA) and TaqMan method to detect the titer of anti-H. pylori antibody in normal human serum and genotype 9 SNPs of MST1 and MST2 genes among 808 samples. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between SNPs and H. pylori infection, as well as the risk of noncardia gastric cancer in codominant, dominant, overdominant, recessive, and log-additive genetic models. Haplotypes were constructed using the Haploview 4.2 software. RESULTS: The CC genotype of MST2 SNP rs10955176 was associated with a reduced risk of H. pylori infection compared to the TT + CT genotype. None of other SNPs were associated with H. pylori infection. The TT genotype of MST2 SNP rs7827435 was associated with a reduced risk of noncardia gastric cancer compared to the AA + AT genotype. None of the SNPs were associated with noncardia gastric cancer. There were no associations between haplotypes and H. pylori infection or the risk of noncardia gastric cancer. CONCLUSIONS: The CC genotype of rs10955176 and the TT genotype of rs7827435 may serve as protective factors against H. pylori infection and noncardia gastric cancer risk, respectively.


Subject(s)
Genetic Predisposition to Disease , Helicobacter Infections , Helicobacter pylori , Polymorphism, Single Nucleotide , Stomach Neoplasms , Humans , Polymorphism, Single Nucleotide/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Helicobacter Infections/genetics , Helicobacter Infections/complications , Male , Middle Aged , Case-Control Studies , Female , Protein Serine-Threonine Kinases/genetics , Hepatocyte Growth Factor/genetics , Proto-Oncogene Proteins/genetics , Aged , Genotype , Serine-Threonine Kinase 3 , Risk Factors , Adult , Carcinogenesis/genetics , AMP-Activated Protein Kinase Kinases , Intracellular Signaling Peptides and Proteins
7.
Environ Res ; 243: 117842, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38065384

ABSTRACT

The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Dust/analysis , Cadmium , Cities , Lead , Environmental Monitoring/methods , Metals, Heavy/analysis , China , Risk Assessment/methods , Soil Pollutants/analysis
8.
Small ; 20(21): e2308430, 2024 May.
Article in English | MEDLINE | ID: mdl-38126626

ABSTRACT

Graphene nanoribbons (GNRs) are promising in nanoelectronics for their quasi-1D structures with tunable bandgaps. The methods for controllable fabrication of high-quality GNRs are still limited. Here a way to generate sub-5-nm GNRs by annealing single-walled carbon nanotubes (SWCNTs) on Cu(111) is demonstrated. The structural evolution process is characterized by low-temperature scanning tunneling microscopy. Substrate-dependent measurements on Au(111) and Ru(0001) reveal that the intermediate strong SWCNT-surface interaction plays a pivotal role in the formation of GNRs.

9.
Nat Commun ; 14(1): 7189, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938565

ABSTRACT

In the latter half of the twentieth century, a significant climate phenomenon "diurnal asymmetric warming" emerged, wherein global land surface temperatures increased more rapidly during the night than during the day. However, recent episodes of global brightening and regional droughts and heatwaves have brought notable alterations to this asymmetric warming trend. Here, we re-evaluate sub-diurnal temperature patterns, revealing a substantial increase in the warming rates of daily maximum temperatures (Tmax), while daily minimum temperatures have remained relatively stable. This shift has resulted in a reversal of the diurnal warming trend, expanding the diurnal temperature range over recent decades. The intensified Tmax warming is attributed to a widespread reduction in cloud cover, which has led to increased solar irradiance at the surface. Our findings underscore the urgent need for enhanced scrutiny of recent temperature trends and their implications for the wider earth system.

10.
Sci Total Environ ; 903: 166711, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37652390

ABSTRACT

Improving soil health and resilience is fundamental for sustainable food production, however the role of soil in maintaining or improving global crop productivity under climate warming is not well identified and quantified. Here, we examined the impact of soil on yield response to climate warming for four major crops (i.e., maize, wheat, rice and soybean), using global-scale datasets and random forest method. We found that each °C of warming reduced global yields of maize by 3.4%, wheat by 2.4%, rice by 0.3% and soybean by 5.0%, which were spatially heterogeneous with possible positive impacts. The random forest modeling analyses further showed that soil organic carbon (SOC), as an indicator of soil quality, dominantly explained the spatial heterogeneity of yield responses to warming and would regulate the negative warming responses. Improving SOC under the medium SOC sequestration scenario would reduce the warming-induced yield loss of maize, wheat, rice and soybean to 0.1% °C-1, 2.7% °C-1, 3.4% °C-1 and - 0.6% °C-1, respectively, avoiding an average of 3%-5% °C-1 of global yield loss. These yield benefits would occur on 53.2%, 67.8%, 51.8% and 71.6% of maize, wheat, rice and soybean planting areas, respectively, with particularly pronounced benefits in the regions with negative warming responses. With improved soil carbon, food systems are predicted to provide additional 20 to over 130 million tonnes of food that would otherwise lose due to future warming. Our findings highlight the critical role of soil in alleviating negative warming impacts on food security, especially for developing regions, given that sustainable actions on soil improvement could be taken broadly.

11.
Entropy (Basel) ; 25(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37509951

ABSTRACT

Most existing chaotic systems have many drawbacks in engineering applications, such as the discontinuous range of chaotic parameters, weak chaotic properties, uneven chaotic sequence outputs, and dynamic degradation. Therefore, based on the above, this paper proposes a new method for the design of a three-dimensional chaotic map. One can obtain the desired number of positive Lyapunov exponents, and can also obtain the desired value of positive Lyapunov exponents. Simulation results show that the proposed system has complex chaotic behavior and high complexity. Finally, the method is implemented into an image encryption transmission scheme and experimental results show that the proposed image encryption scheme can resist brute force attacks, correlation attacks, and differential attacks, so it has a higher security.

12.
Foods ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444295

ABSTRACT

Global emergencies have a profound impact on exacerbating food insecurity, and the protracted Russia-Ukraine conflict has emerged as a significant driver of a global food crisis. Accurately quantifying the impact of this conflict is crucial for achieving sustainable development goals. The multi-indicator comprehensive evaluation approach was used to construct a grain security composite index (GSCI). Moreover, econometric model was used to predict the potential impacts of the conflict on global grain security in 2030 under two scenarios: with and without the "Russia-Ukraine conflict". The results conclude that global food prices reached unprecedented levels as a consequence of the conflict, leading to notable fluctuations in food prices, especially with a significant surge in wheat prices. The conflict had a negative impact on global grain security, resulting in a decline in grain security from 0.538 to 0.419. Predictions indicate that the influence of the conflict on global grain security will be substantially greater compared to the scenario without the conflict in 2023-2030, ranging from 0.033 to 0.13. Furthermore, grain security will first decrease and then increase under the sustained consequences of the conflict. The achievement of the 2030 sustainable development goals will encounter significant challenges in light of these circumstances.

13.
Entropy (Basel) ; 25(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37238573

ABSTRACT

In this paper, taking the generalized synchronization problem of discrete chaotic systems as a starting point, a generalized synchronization method incorporating error-feedback coefficients into the controller based on the generalized chaos synchronization theory and stability theorem for nonlinear systems is proposed. Two discrete chaotic systems with different dimensions are constructed in this paper, the dynamics of the proposed systems are analyzed, and finally, the phase diagrams, Lyapunov exponent diagrams, and bifurcation diagrams of these are shown and described. The experimental results show that the design of the adaptive generalized synchronization system is achievable in cases in which the error-feedback coefficient satisfies certain conditions. Finally, a chaotic hiding image encryption transmission system based on a generalized synchronization approach is proposed, in which an error-feedback coefficient is introduced into the controller.

14.
Biotechnol Genet Eng Rev ; : 1-17, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37057740

ABSTRACT

The long non-coding RNA (LncRNA) X-inactive specific transcript (XIST) regulates the biological process of osteoclasts and the process of related diseases. This study was attempted to investigate the mechanism of LncRNA XIST acting in osteoclast formation and orthodontic induced inflammatory root resorption (OIIRR). The compression force (CF) -induced cell model and the orthodontic tooth movement (OTM) rat model were designed and established in this study. The expression of LncRNA XIST, miR-130b-3p, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) as well as osteoclast related marker genes and inflammatory factors level were measured in this study. The interaction among LncRNA XIST, microRNA-130b-3p (miR-130b-3p) and PTEN were researched through luciferase activity and western blot assay. Pathological sections were used to analyze root resorption and osteoclast formation. The OTM rat model was successfully constructed, which was characterized by increased tooth spacing and increased root resorption pits. PTEN and LncRNA XIST was overexpressed in OTM group. Mechanism analysis showed that the overexpression of LncRNA XIST enhanced the PTEN level by sponging miR-130b-3p. The overexpression of LncRNA XIST increased the secretion of inflammatory factors and positive osteoclasts number, but inhibited the differentiation of osteoclasts by sponging miR-130b-3p and promoting the level of PTEN. This finding demonstrates that LncRNA XIST regulates osteoclast formation and aggravated OIIRR through miR-130b-3p/PTEN axis, suggesting that LncRNA XIST may be used as potential targets for OIIRR therapy.

15.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36861441

ABSTRACT

Several cell types have been proposed to create the required microenvironment for spermatogenesis. However, expression patterns of the key growth factors produced by these somatic cells have not been systematically studied and no such factor has been conditionally deleted from its primary source(s), raising the question of which cell type(s) are the physiological sources of these growth factors. Here, using single-cell RNA sequencing and a series of fluorescent reporter mice, we found that stem cell factor (Scf), one of the essential growth factors for spermatogenesis, was broadly expressed in testicular stromal cells, including Sertoli, endothelial, Leydig, smooth muscle and Tcf21-CreER+ stromal cells. Both undifferentiated and differentiating spermatogonia were associated with Scf-expressing Sertoli cells in the seminiferous tubule. Conditional deletion of Scf from Sertoli cells, but not any other Scf-expressing cells, blocked the differentiation of spermatogonia, leading to complete male infertility. Conditional overexpression of Scf in Sertoli cells, but not endothelial cells, significantly increased spermatogenesis. Our data reveal the importance of anatomical localization for Sertoli cells in regulating spermatogenesis and that SCF produced specifically by Sertoli cells is essential for spermatogenesis.


Subject(s)
Sertoli Cells , Stem Cell Factor , Male , Animals , Mice , Sertoli Cells/metabolism , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Spermatogenesis/genetics , Testis/metabolism , Spermatogonia/metabolism
16.
Front Endocrinol (Lausanne) ; 14: 1098881, 2023.
Article in English | MEDLINE | ID: mdl-36909336

ABSTRACT

Over the past few decades, increasing prevalence of obesity caused an enormous medical, social, and economic burden. As the sixth most important risk factor contributing to the overall burden of disease worldwide, obesity not only directly harms the human body, but also leads to many chronic diseases such as diabetes, cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), and mental illness. Weight loss is still one of the most effective strategies against obesity and related disorders. Recently, the link between intestinal microflora and metabolic health has been constantly established. Butyrate, a four-carbon short-chain fatty acid, is a major metabolite of the gut microbiota that has many beneficial effects on metabolic health. The anti-obesity activity of butyrate has been demonstrated, but its mechanisms of action have not been fully described. This review summarizes current knowledge of butyrate, including its production, absorption, distribution, metabolism, and the effect and mechanisms involved in weight loss and obesity-related diseases. The aim was to contribute to and advance our understanding of butyrate and its role in obesity. Further exploration of butyrate and its pathway may help to identify new anti-obesity.


Subject(s)
Butyrates , Obesity , Humans , Butyrates/pharmacology , Obesity/metabolism , Fatty Acids, Volatile/metabolism , Risk Factors , Weight Loss
17.
Am J Orthod Dentofacial Orthop ; 163(4): 553-560.e3, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36990529

ABSTRACT

INTRODUCTION: This study proposed an automatic diagnosis method based on deep learning for adenoid hypertrophy detection on cone-beam computed tomography. METHODS: The hierarchical masks self-attention U-net (HMSAU-Net) for segmentation of the upper airway and the 3-dimensional (3D)-ResNet for diagnosing adenoid hypertrophy were constructed on the basis of 87 cone-beam computed tomography samples. A self-attention encoder module was added to the SAU-Net to optimize upper airway segmentation precision. The hierarchical masks were introduced to ensure that the HMSAU-Net captured sufficient local semantic information. RESULTS: We used Dice to evaluate the performance of HMSAU-Net and used diagnostic method indicators to test the performance of 3D-ResNet. The average Dice value of our proposed model was 0.960, which was superior to the 3DU-Net and SAU-Net models. In the diagnostic models, 3D-ResNet10 had an excellent ability to diagnose adenoid hypertrophy automatically with a mean accuracy of 0.912, a mean sensitivity of 0.976, a mean specificity of 0.867, a mean positive predictive value of 0.837, a mean negative predictive value of 0.981, and a F1 score of 0.901. CONCLUSIONS: The value of this diagnostic system lies in that it provides a new method for the rapid and accurate early clinical diagnosis of adenoid hypertrophy in children, allows us to look at the upper airway obstruction in three-dimensional space and relieves the work pressure of imaging doctors.


Subject(s)
Adenoids , Deep Learning , Child , Humans , Adenoids/diagnostic imaging , Cone-Beam Computed Tomography/methods , Nose , Hypertrophy/diagnostic imaging , Image Processing, Computer-Assisted/methods
18.
Sci Total Environ ; 855: 158634, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36089025

ABSTRACT

The diversification or decoupling of production chains from China to alternative Asian countries such as India or Indonesia would impact the spatial distribution of anthropogenic emissions, with corresponding economic impacts due to mortality associated with particulate matter exposure. We evaluated these changes using the Community Earth System Model, the Integrated Exposure-Response (IER) model and Willingness To Pay (WTP) method. Significant effects on PM2.5 related mortality and economic cost for these deaths were seen in many East, Southeast and South Asian countries, particularly those immediately downwind of these three countries. Transferring all of export-related manufacturing to Indonesia resulted in significant mortality decreases in China and South Korea by 78k (5 per 100k) and 1k (2 per 100k) respectively, while Indonesia's mortality significantly increased (73.7k; 29 per 100k), as well as India, Pakistan and Nepal. When production was transferred to India, mortality rates in East Asia show similar changes to the Indonesian scenario, while mortalities in India increased dramatically (87.9k; 6 per 100k), and mortalities in many neighbors of India were also severely increased. Nevertheless, the economic costs for PM2.5 related mortality were much smaller than national GDP changes in China (0.9 % of GDP vs. 18.3 % of GDP), India (2.7 % of GDP vs. 84.3 % of GDP) or Indonesia (9.4 % of GDP vs. 337 % of GDP) due to shifting all of export-related production lines from China to India or Indonesia. Morally, part of the benefits of economic activity should be used to compensate the neighboring communities where mortality increases occur.


Subject(s)
Particulate Matter , Indonesia , China , India , Pakistan
19.
Insects ; 13(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36421977

ABSTRACT

The ultrastructure of the ejaculatory duct was investigated in the scorpionflies Cerapanorpa nanwutaina (Chou 1981) and Furcatopanorpa longihypovalva (Hua & Cai, 2009) (Mecoptera: Panorpidae) using light and transmission electron microscopy. The ejaculatory ducts of both species comprise a median duct and an accessory sac. The median duct consists of a basal lamina, a mono-layered epithelium, a subcuticular cavity, and an inner cuticle. The accessory sac contains a single layer of epithelium and a basal lamina. A muscular layer is present in the accessory sac of C. nanwutaina and in the median duct of F. longihypovalva. The epithelia in the median duct and the accessory sac are well developed, their cells containing numerous cisterns of rough endoplasmic reticulum, mitochondria, and microvilli. The secretions of the median duct are first extruded into the subcuticular cavity and then into the lumen through an inner cuticle, while the secretions of the accessory sac are discharged directly into the lumen. The ejaculatory duct of F. longihypovalva is longer and has thicker epithelium with more cell organelles and secretions than that of C. nanwutaina.

20.
Int Heart J ; 63(6): 1176-1186, 2022.
Article in English | MEDLINE | ID: mdl-36450557

ABSTRACT

Circular RNAs (circRNAs) are a class of powerful regulators of gene expression. This study aimed to determine whether circTRRAP (hsa_circ_0081241) was implicated in the cardioprotective effects of salvianolic acid B (Sal B) against myocardial ischemia/reperfusion (I/R) injury and its associated mechanism.Cell viability was analyzed using Cell Counting Kit-8 (CCK-8), and flow cytometry was conducted to evaluate cell cycle progression and cell apoptosis. The leakage of lactic dehydrogenase (LDH), production of malondialdehyde (MDA), and activity of superoxide dismutase (SOD) were measured using their corresponding commercial kits to analyze cell death and oxidative stress.I/R treatment suppressed viability and cell cycle progression and induced the apoptosis and oxidative stress of AC16 cardiomyocytes, whereas Sal B protected AC16 cardiomyocytes against I/R injury. I/R upregulated circTRRAP expression, whereas Sal B dose-dependently reduced the circTRRAP level in AC16 cardiomyocytes. The protective effects of Sal B in I/R-induced AC16 cardiomyocytes were overturned by the overexpression of circTRRAP. CircTRRAP negatively regulated miR-214-3p expression by binding to it in AC16 cardiomyocytes. The circTRRAP overexpression-mediated effects were reversed by the addition of miR-214-3p mimics in AC16 cardiomyocytes. MiR-214-3p targeted the 3'-untranslated region (3'UTR) of SOX6, and SOX6 was regulated by the circTRRAP/miR-214-3p axis in AC16 cardiomyocytes. SOX6 knockdown overturned the circTRRAP overexpression-induced effects in AC16 cardiomyocytes.In conclusion, the silence of circTRRAP was implicated in Sal B-mediated cardioprotective effects against I/R injury by regulating the miR-214-3p/SOX6 axis.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Humans , Myocytes, Cardiac , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Ischemia , MicroRNAs/genetics , SOXD Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...