Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981128

ABSTRACT

With increasing battery demand comes a need for diversified Li sources beyond brines. Among all Li-bearing minerals, spodumene is most often used for its high Li content and natural abundance. However, the traditional approach to process spodumene is costly and energy-intensive, requiring the mineral be transformed from its natural α to ß phase at >1000 °C. Acid leaching is then applied, followed by neutralization to precipitate Li2CO3. In this work, we report an alternative method to extract Li directly from α-spodumene, which is performed at lower temperatures and avoids the use of acids. It is shown that Li2CO3 is formed with >90% yield at 750 °C by reacting α-spodumene with Na2CO3 and Al2O3. The addition of Al2O3 is critical to reduce the amount of Li2SiO3 that forms when only Na2CO3 is used, instead providing increased thermodynamic driving force to form NaAlSiO4 and Li2CO3 as the sole products. We find that this reaction is most effective at 4 h, after which volatility limits the yield. Following its extraction, Li2CO3 can be isolated by washing the sample using deionized water. This energy-saving and acid-free route to obtain Li2CO3 directly from spodumene can help meet the growing demand for Li.

2.
J Cell Commun Signal ; 18(1): e12016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545258

ABSTRACT

Long noncoding RNAs (lncRNAs) are involved in regulatory processes in laryngeal squamous cell carcinoma (LSCC) at posttranscriptional epigenetic modification level. Yet, the function and underlying mechanism behind lncRNA AC004943.2 in LSCC is still obscure. Therefore, the potential role of AC004943.2 in LSCC progression was investigated. The expression of gene or protein was tested by real-time quantitative polymerase chain reaction and western blot. MTT, colony formation, wound healing, and transwell experiments were applied to detect LSCC cell viability, proliferation, migration and invasion, respectively. The interaction among AC004943.2, miR-135a-5p, and protein tyrosine kinase 2 (PTK2) were analyzed by bioinformatics prediction and luciferase assay. AC004943.2 was highly expressed in LSCC cells compared with normal human bronchial epithelial cells, while miR-135a-5p was lowly expressed. AC004943.2 knockdown or miR-135a-5p overexpression inhibited LSCC cell viability, proliferation, migration and invasion. Mechanistically, AC004943.2 increased PTK2 expression in LSCC cells by sponging miR-135a-5p. Furthermore, miR-135a-5p knockdown inverted the inhibitory effect of AC004943.2 silencing on LSCC cell malignant behaviors. MiR-135a-5p upregulation attenuated the PTK2/PI3K pathway to inhibit progression of LSCC. AC004943.2 facilitated the cancerous phenotypes of LSCC cells by activating the PTK2/PI3K pathway through targeting miR-135a-5p, which furnished a therapeutic candidate for LSCC treatment.

3.
Daru ; 32(1): 189-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407745

ABSTRACT

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) seriously threatens the health of people. The mitochondrial dysfunction in cardiomyocytes can promote the progression of MIRI. Dexmedetomidine (Dex) could alleviate the myocardial injury, which was known to reverse mitochondrial dysfunction in lung injury. However, the function of Dex in mitochondrial dysfunction during MIRI remains unclear. OBJECTIVE: To assess the function of Dex in mitochondrial dysfunction during MIRI. METHODS: To investigate the function of Dex in MIRI, H9C2 cells were placed in condition of hypoxia/reoxygenation (H/R). CCK8 assay was performed to test the cell viability, and the mitochondrial membrane potential was evaluated by JC-1 staining. In addition, the binding relationship between Sirt3 and Prdx3 was explored by Co-IP assay. Furthermore, the protein expressions were examined using western blot. RESULTS: Dex could abolish H/R-induced mitochondrial dysfunction in H9C2 cells. In addition, H/R treatment significantly inhibited the expression of Sirt3, while Dex partially restored this phenomenon. Knockdown of Sirt3 or Prdx3 obviously reduced the protective effect of Dex on H/R-induced mitochondrial injury. Meanwhile, Sirt3 could enhance the function of Prdx3 via deacetylation of Prdx3. CONCLUSION: Dex was found to attenuate H/R-induced mitochondrial dysfunction in cardiomyocytes via activation of Sirt3/Prdx3 pathway. Thus, this study might shed new lights on exploring new strategies for the treatment of MIRI.


Subject(s)
Dexmedetomidine , Myocardial Reperfusion Injury , Myocytes, Cardiac , Peroxiredoxin III , Signal Transduction , Sirtuin 3 , Animals , Rats , Cell Hypoxia/drug effects , Cell Line , Cell Survival/drug effects , Dexmedetomidine/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peroxiredoxin III/metabolism , Peroxiredoxin III/genetics , Signal Transduction/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sirtuins
4.
Curr Res Food Sci ; 7: 100569, 2023.
Article in English | MEDLINE | ID: mdl-37664003

ABSTRACT

The peptide MOp2 obtained from Moringa oleifera seeds showed good antimicrobial activity. However, the stability of its activity has not yet been studied. In the present study, MOp2-loaded thiolated chitosan-stabilized (CMOp2) Pickering emulsion was prepared and applied to prolong the shelf life of grass carp. The encapsulation rate of MOp2 was 57.7% in CMOp2. In addition, the effects of different concentrations of CMOp2 solid particles and pH on droplet size, zeta optional and storage stability of Pickering emulsions were evaluated; the best condition for preparing Pickering emulsion through experiment was 1.75% CMOp2 solid particles at pH 9.5. Moreover, morphological observations and rheological analysis indicated that Pickering emulsions were considered a water-in-oil emulsion with typical non-Newtonian fluid characteristics. Furthermore, the prepared Pickering emulsion could significantly inhibit the growth of Escherichia coli and Staphylococcus aureus. Besides, Pickering emulsion effectively prevented spoilage of grass carp, and the Pickering emulsion-treated group reduced its pH, TVB-N and color values, inhibited microbial growth, and extended shelf life to 9 day at the storage of 4 °C. Overall, the present findings provide a reference for the application of MOp2-loaded Pickering emulsions in food preservation.

5.
Nat Commun ; 14(1): 2395, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100828

ABSTRACT

Fractures are integral to the hydrology and geochemistry of watersheds, but our understanding of fracture dynamics is very limited because of the challenge of monitoring the subsurface. Here we provide evidence that long-term, high-frequency measurements of the river concentration of the ultra-trace element thorium (Th) can provide a signature of bedrock fracture processes spanning neighboring watersheds in Colorado. River Th concentrations show abrupt (subdaily) excursions and biexponential decay with approximately 1-day and 1-week time constants, concentration patterns that are distinct from all other solutes except beryllium and arsenic. The patterns are uncorrelated with daily precipitation records or seasonal trends in atmospheric deposition. Groundwater Th analyses are consistent with bedrock release and dilution upon mixing with river water. Most Th excursions have no seismic signatures that are detectable 50 km from the site, suggesting the Th concentrations can reveal aseismic fracture or fault events. We find, however, a weak statistical correlation between Th and seismic motion caused by distant earthquakes, possibly the first chemical signature of dynamic earthquake triggering, a phenomenon previously identified only through geophysical methods.

6.
Microbiome ; 9(1): 121, 2021 05 22.
Article in English | MEDLINE | ID: mdl-34022966

ABSTRACT

BACKGROUND: Biogeochemical exports from watersheds are modulated by the activity of microorganisms that function over micron scales. Here, we tested the hypothesis that meander-bound regions share a core microbiome and exhibit patterns of metabolic potential that broadly predict biogeochemical processes in floodplain soils along a river corridor. RESULTS: We intensively sampled the microbiomes of floodplain soils located in the upper, middle, and lower reaches of the East River, Colorado. Despite the very high microbial diversity and complexity of the soils, we reconstructed 248 quality draft genomes representative of subspecies. Approximately one third of these bacterial subspecies was detected across all three locations at similar abundance levels, and ~ 15% of species were detected in two consecutive years. Within the meander-bound floodplains, we did not detect systematic patterns of gene abundance based on sampling position relative to the river. However, across meanders, we identified a core floodplain microbiome that is enriched in capacities for aerobic respiration, aerobic CO oxidation, and thiosulfate oxidation with the formation of elemental sulfur. Given this, we conducted a transcriptomic analysis of the middle floodplain. In contrast to predictions made based on the prominence of gene inventories, the most highly transcribed genes were relatively rare amoCAB and nxrAB (for nitrification) genes, followed by genes involved in methanol and formate oxidation, and nitrogen and CO2 fixation. Within all three meanders, low soil organic carbon correlated with high activity of genes involved in methanol, formate, sulfide, hydrogen, and ammonia oxidation, nitrite oxidoreduction, and nitrate and nitrite reduction. Overall, the results emphasize the importance of sulfur, one-carbon and nitrogen compound metabolism in soils of the riparian corridor. CONCLUSIONS: The disparity between the scale of a microbial cell and the scale of a watershed currently limits the development of genomically informed predictive models describing watershed biogeochemical function. Meander-bound floodplains appear to serve as scaling motifs that predict aggregate capacities for biogeochemical transformations, providing a foundation for incorporating riparian soil microbiomes in watershed models. Widely represented genetic capacities did not predict in situ activity at one time point, but rather they define a reservoir of biogeochemical potential available as conditions change. Video abstract.


Subject(s)
Microbiota , Soil , Carbon , Microbiota/genetics , Nitrogen , Rivers
7.
PLoS One ; 16(3): e0247907, 2021.
Article in English | MEDLINE | ID: mdl-33760812

ABSTRACT

There is a growing understanding of the role that bedrock weathering can play as a source of nitrogen (N) to soils, groundwater and river systems. The significance is particularly apparent in mountainous environments where weathering fluxes can be large. However, our understanding of the relative contributions of rock-derived, or geogenic, N to the total N supply of mountainous watersheds remains poorly understood. In this study, we develop the High-Altitude Nitrogen Suite of Models (HAN-SoMo), a watershed-scale ensemble of process-based models to quantify the relative sources, transformations, and sinks of geogenic and atmospheric N through a mountain watershed. Our study is based in the East River Watershed (ERW) in the Upper Colorado River Basin. The East River is a near-pristine headwater watershed underlain primarily by an N-rich Mancos Shale bedrock, enabling the timing and magnitude of geogenic and atmospheric contributions to watershed scale dissolved N-exports to be quantified. Several calibration scenarios were developed to explore equifinality using >1600 N concentration measurements from streams, groundwater, and vadose zone samples collected over the course of four years across the watershed. When accounting for recycling of N through plant litter turnover, rock weathering accounts for approximately 12% of the annual dissolved N sources to the watershed in the most probable calibration scenario (0-31% in other scenarios), and 21% (0-44% in other scenarios) when considering only "new" N sources (i.e. geogenic and atmospheric). On an annual scale, instream dissolved N elimination, plant turnover (including cattle grazing) and atmospheric deposition are the most important controls on N cycling.


Subject(s)
Environmental Monitoring , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Colorado
8.
mSystems ; 5(6)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33144308

ABSTRACT

Previous studies have shown that α-linolenic acid (ALA) has a significant regulatory effect on related disorders induced by high-fat diets (HFDs), but little is known regarding the correlation between the gut microbiota and disease-related multitissue homeostasis. We systematically investigated the effects of ALA on the body composition, glucose homeostasis, hyperlipidemia, metabolic endotoxemia and systemic inflammation, white adipose tissue (WAT) homeostasis, liver homeostasis, intestinal homeostasis, and gut microbiota of mice fed an HFD (HFD mice). We found that ALA improved HFD-induced multitissue metabolic disorders and gut microbiota disorders to various degrees. Importantly, we established a complex but clear network between the gut microbiota and host parameters. Several specific differential bacteria were significantly associated with improved host parameters. Rikenellaceae_RC9_gut_group and Parasutterella were positively correlated with HFD-induced "harmful indicators" and negatively correlated with "beneficial indicators." Intriguingly, Bilophila showed a strong negative correlation with HFD-induced multitissue metabolic disorders and a significant positive correlation with most beneficial indicators, which is different from its previous characterization as a "potentially harmful genus." Turicibacter might be the key beneficial bacterium for ALA-improved metabolic endotoxemia, while Blautia might play an important role in ALA-improved gut barrier integrity and anti-inflammatory effects. The results suggested that the gut microbiota, especially some specific bacteria, played an important role in the process of ALA-improved multitissue homeostasis in HFD mice, and different bacteria might have different divisions of regulation.IMPORTANCE Insufficient intake of n-3 polyunsaturated fatty acids is an important issue in modern Western-style diets. A large amount of evidence now suggests that a balanced intestinal microecology is considered an important part of health. Our results show that α-linolenic acid administration significantly improved the host metabolic phenotype and gut microbiota of mice fed a high-fat diet, and there was a correlation between the improved gut microbiota and metabolic phenotype. Some specific bacteria may play a unique regulatory role. Here, we have established correlation networks between gut microbiota and multitissue homeostasis, which may provide a new basis for further elucidating the relationship between the gut microbiota and host metabolism.

9.
Sci Rep ; 9(1): 17198, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748585

ABSTRACT

Although bedrock weathering strongly influences water quality and global carbon and nitrogen budgets, the weathering depths and rates within subsurface are not well understood nor predictable. Determination of both porewater chemistry and subsurface water flow are needed in order to develop more complete understanding and obtain weathering rates. In a long-term field study, we applied a multiphase approach along a mountainous watershed hillslope transect underlain by marine shale. Here we report three findings. First, the deepest extent of the water table determines the weathering front, and the range of annually water table oscillations determines the thickness of the weathering zone. Below the lowest water table, permanently water-saturated bedrock remains reducing, preventing deeper pyrite oxidation. Secondly, carbonate minerals and potentially rock organic matter share the same weathering front depth with pyrite, contrary to models where weathering fronts are stratified. Thirdly, the measurements-based weathering rates from subsurface shale are high, amounting to base cation exports of about 70 kmolc ha-1 y-1, yet consistent with weathering of marine shale. Finally, by integrating geochemical and hydrological data we present a new conceptual model that can be applied in other settings to predict weathering and water quality responses to climate change.

10.
Ecol Evol ; 9(12): 6869-6900, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380022

ABSTRACT

Watersheds are important suppliers of freshwater for human societies. Within mountainous watersheds, microbial communities impact water chemistry and element fluxes as water from precipitation events discharge through soils and underlying weathered rock, yet there is limited information regarding the structure and function of these communities. Within the East River, CO watershed, we conducted a depth-resolved, hillslope to riparian zone transect study to identify factors that control how microorganisms are distributed and their functions. Metagenomic and geochemical analyses indicate that distance from the East River and proximity to groundwater and underlying weathered shale strongly impact microbial community structure and metabolic potential. Riparian zone microbial communities are compositionally distinct, from the phylum down to the species level, from all hillslope communities. Bacteria from phyla lacking isolated representatives consistently increase in abundance with increasing depth, but only in the riparian zone saturated sediments we found Candidate Phyla Radiation bacteria. Riparian zone microbial communities are functionally differentiated from hillslope communities based on their capacities for carbon and nitrogen fixation and sulfate reduction. Selenium reduction is prominent at depth in weathered shale and saturated riparian zone sediments and could impact water quality. We anticipate that the drivers of community composition and metabolic potential identified throughout the studied transect will predict patterns across the larger watershed hillslope system.

11.
Sci Total Environ ; 685: 357-369, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176222

ABSTRACT

River to floodplain hydrologic connectivity is strongly enhanced by beaver- (Castor canadensis) engineered channel water diversions. The hydroecological impacts are wide ranging and generally positive, however, the hydrogeochemical characteristics of beaver-induced flowpaths have not been thoroughly examined. Using a suite of complementary ground- and drone-based heat tracing and remote sensing methodology we characterized the physical template of beaver-induced floodplain exchange for two alluvial mountain streams near Crested Butte, Colorado, USA. A flowpath-oriented perspective to water quality sampling allowed characterization of the chemical evolution of channel water diverted through floodplain beaver ponds and ultimately back to the channel in 'beaver pond return flows'. Subsurface return flow seepages were universally suboxic, while ponds and surface return flows showed a range of oxygen concentration due to in-situ photosynthesis and atmospheric mixing. Median concentrations of reduced metals: manganese (Mn), iron (Fe), aluminum (Al), and arsenic (As) were substantially higher along beaver-induced flowpaths than in geologically controlled seepages and upstream main channel locations. The areal footprint of reduced return seepage flowpaths were imaged with surface electromagnetic methods, indicating extensive zones of high-conductivity shallow groundwater flowing back toward the main channels and emerging at relatively warm bank seepage zones observed with infrared. Multiple-depth redox dynamics within one focused seepage zone showed coupled variation over time, likely driven by observed changes in seepage rate that may be controlled by pond stage. High-resolution times series of dissolved Mn and Fe collected downstream of the beaver-impacted reaches demonstrated seasonal dynamics in mixed river metal concentrations. Al time series concentrations showed proportional change to Fe at the smaller stream location, indicating chemically reduced flowpaths were sourcing Al to the channel. Overall our results indicated beaver-induced floodplain exchanges create important, and perhaps dominant, transport pathways for floodplain metals by expanding chemically-reduced zones paired with strong advective exchange.

12.
Sci Total Environ ; 637-638: 672-685, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29758424

ABSTRACT

Recharge of alluvial aquifers is a key component in understanding the interaction between floodplain vadose zone biogeochemistry and groundwater quality. The Rifle Site (a former U-mill tailings site) adjacent to the Colorado River is a well-established field laboratory that has been used for over a decade for the study of biogeochemical processes in the vadose zone and aquifer. This site is considered an exemplar of both a riparian floodplain in a semiarid region and a post-remediation U-tailings site. In this paper we present Sr isotopic data for groundwater and vadose zone porewater samples collected in May and July 2013 to build a mixing model for the fractional contribution of vadose zone porewater (i.e. recharge) to the aquifer and its variation across the site. The vadose zone porewater contribution to the aquifer ranged systematically from 0% to 38% and appears to be controlled largely by the microtopography of the site. The area-weighted average contribution across the site was 8% corresponding to a net recharge of 7.5 cm. Given a groundwater transport time across the site of ~1.5 to 3 years, this translates to a recharge rate between 5 and 2.5 cm/yr, and with the average precipitation to the site implies a loss from the vadose zone due to evapotranspiration of 83% to 92%, both ranges are in good agreement with previously published results by independent methods. A uranium isotopic (234U/238U activity ratios) mixing model for groundwater and surface water samples indicates that a ditch across the site is hydraulically connected to the aquifer and locally significantly affects groundwater. Groundwater samples with high U concentrations attributed to natural bio-reduced zones have 234U/238U activity ratios near 1, suggesting that the U currently being released to the aquifer originated from the former U-mill tailings.

13.
Ground Water ; 56(1): 73-86, 2018 01.
Article in English | MEDLINE | ID: mdl-28683163

ABSTRACT

A non-electrostatic generalized composite surface complexation model (SCM) was developed for U(VI) sorption on contaminated F-Area sediments from the U.S. Department of Energy Savannah River Site, South Carolina. The objective of this study was to test if a simpler, semi-empirical, non-electrostatic U(VI) sorption model (NEM) could achieve the same predictive performance as a SCM with electrostatic correction terms in describing U(VI) plume evolution and long-term mobility. One-dimensional reactive transport simulations considering key hydrodynamic processes, Al and Fe minerals, as well as H+ and U surface complexation, with and without electrostatic correction terms, were conducted. The NEM was first calibrated with laboratory batch H+ and U(VI) sorption data on F-Area sediments, and then the surface area of the NEM was adjusted to match field observations of dissolved U(VI). Modeling results indicate that the calibrated NEM was able to perform as well as the previously developed electrostatic model in predicting the long-term evolution of H+ and U(VI) at the site, given the variability of field-site data. The electrostatic and NEM models yield somewhat different results for the time period when basin discharge was active; however, it is not clear which modeling approach may be better to model this early time period because groundwater quality data during this period were not available. A key finding of this study is that the applicability of NEM (and thus robustness of its predictions) to the field system evolves with time and is strongly dependent on the pH range that was used to develop the model.


Subject(s)
Groundwater/chemistry , Uranium/chemistry , Water Pollutants, Radioactive , Adsorption , Geologic Sediments , South Carolina
14.
J Environ Sci (China) ; 57: 24-32, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28647245

ABSTRACT

In order to understand the transport and humification processes of dissolved organic matter (DOM) within sediments of a semi-arid floodplain at Rifle, Colorado, fluorescence excitation-emission matrix (EEM) spectroscopy, humification index (HIX) and specific UV absorbance (SUVA) at 254nm were applied for characterizing depth and seasonal variations of DOM composition. Results revealed that late spring snowmelt leached relatively fresh DOM from plant residue and soil organic matter down into the deeper vadose zone (VZ). More humified DOM is preferentially adsorbed by upper VZ sediments, while non- or less-humified DOM was transported into the deeper VZ. Interestingly, DOM at all depths undergoes rapid biological humification process evidenced by the products of microbial by-product-like (i.e., tyrosine-like and tryptophan-like) matter in late spring and early summer, particularly in the deeper VZ, resulting in more humified DOM (e.g., fulvic-acid-like and humic-acid-like substances) at the end of year. This indicates that DOM transport is dominated by spring snowmelt, and DOM humification is controlled by microbial degradation, with seasonal variations. It is expected that these relatively simple spectroscopic measurements (e.g., EEM spectroscopy, HIX and SUVA) applied to depth- and temporally-distributed pore-water samples can provide useful insights into transport and humification of DOM in other subsurface environments as well.


Subject(s)
Environmental Monitoring , Floods/statistics & numerical data , Humic Substances/analysis , Soil/chemistry , Climate , Seasons
15.
Fitoterapia ; 103: 294-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25964186

ABSTRACT

A novel nor-lupane triterpenoid, 3-oxo-29α-hydroxy-17ß,20-epoxy-28-norlupane (1), and two new guaiane sesquiterpenoids, schvenols A-B (2-3), has been isolated from leaves of Schefflera venulosa. Structures of the new compounds were elucidated on the basis of their spectroscopic methods, including 1D and 2D NMR techniques. And the structure of 1 was further confirmed by the X-ray diffraction analysis. None of the compounds showed inhibitory effects on NO release in LPS-stimulated RAW 264.7 macrophage cell line.


Subject(s)
Araliaceae/chemistry , Sesquiterpenes, Guaiane/chemistry , Triterpenes/chemistry , Animals , Cell Line , Macrophages/drug effects , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Nitric Oxide/metabolism , Plant Leaves/chemistry , Sesquiterpenes, Guaiane/isolation & purification , Triterpenes/isolation & purification
16.
Environ Sci Technol ; 48(12): 6569-77, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24865372

ABSTRACT

Many aquifers contaminated by U(VI)-containing acidic plumes are composed predominantly of quartz-sand sediments. The F-Area of the Savannah River Site (SRS) in South Carolina (USA) is an example. To predict U(VI) mobility and natural attenuation, we conducted U(VI) adsorption experiments using the F-Area plume sediments and reference quartz, goethite, and kaolinite. The sediments are composed of ∼96% quartz-sand and 3-4% fine fractions of kaolinite and goethite. We developed a new humic acid adsorption method for determining the relative surface area abundances of goethite and kaolinite in the fine fractions. This method is expected to be applicable to many other binary mineral pairs, and allows successful application of the component additivity (CA) approach based surface complexation modeling (SCM) at the SRS F-Area and other similar aquifers. Our experimental results indicate that quartz has stronger U(VI) adsorption ability per unit surface area than goethite and kaolinite at pH ≤ 4.0. Our modeling results indicate that the binary (goethite/kaolinite) CA-SCM under-predicts U(VI) adsorption to the quartz-sand dominated sediments at pH ≤ 4.0. The new ternary (quartz/goethite/kaolinite) CA-SCM provides excellent predictions. The contributions of quartz-sand, kaolinite, and goethite to U(VI) adsorption and the potential influences of dissolved Al, Si, and Fe are also discussed.


Subject(s)
Geologic Sediments/chemistry , Models, Theoretical , Quartz/chemistry , Silicon Dioxide/chemistry , Soil Pollutants, Radioactive/isolation & purification , Uranium/isolation & purification , Adsorption , Humic Substances , Iron Compounds/chemistry , Kaolin/chemistry , Kinetics , Minerals/chemistry , South Carolina , Surface Properties , Temperature , Water Pollutants, Radioactive/isolation & purification
17.
Environ Sci Technol ; 46(8): 4490-7, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22432961

ABSTRACT

At the Savannah River Site's F-Area, wastewaters containing radionuclides were disposed into seepage basins for decades. After closure and capping in 1991, the U.S. Department of Energy (DOE) has being monitoring and remediating the groundwater plume. Despite numerous studies of the plume, its persistence for over 20 years has not been well understood. To better understand the plume dynamics, a limited number of deep boreholes were drilled to determine the current plume characteristics. A mixing model was developed to predict plume tritium and nitrate concentrations. We found that the plume trailing edges have emerged for some contaminants, and that contaminant recharge from the basin's vadose zone is still important. The model's estimated time-dependent basin drainage rates combined with dilution from natural recharge successfully predicted plume tritium and nitrate concentrations. This new understanding of source zone influences can help guide science-based remediation, and improve predictions of the natural attenuation timeframes.


Subject(s)
Geologic Sediments/analysis , Groundwater/analysis , Models, Theoretical , Radioactive Waste , Water Pollutants, Radioactive/analysis , Environmental Monitoring , Nitrates/analysis , South Carolina , Tritium/analysis , Uranium/analysis , Water Movements
18.
Environ Sci Technol ; 46(3): 1565-71, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22191402

ABSTRACT

The mobility of an acidic uranium waste plume in the F-Area of Savannah River Site is of great concern. In order to understand and predict uranium mobility, U(VI) adsorption experiments were performed as a function of pH using background F-Area aquifer sediments and reference goethite and kaolinite (major reactive phases of F-Area sediments), and a component-additivity (CA) based surface complexation model (SCM) was developed. Our experimental results indicate that the fine fractions (≤45 µm) in sediments control U(VI) adsorption due to their large surface area, although the quartz sands show a stronger adsorption ability per unit surface area than the fine fractions at pH < 5.0. Kaolinite is a more important sorbent for U(VI) at pH < 4.0, while goethite plays a major role at pH > 4.0. Our CA model combines an existing U(VI) SCM for goethite and a modified U(VI) SCM for kaolinite along with estimated relative surface area abundances of these component minerals. The modeling approach successfully predicts U(VI) adsorption behavior by the background F-Area sediments. The model suggests that exchange sites on kaolinite dominate U(VI) adsorption at pH < 4.0, goethite and kaolinite edge sites cocontribute to U(VI) adsorption at pH 4.0-6.0, and goethite dominates U(VI) adsorption at pH > 6.0.


Subject(s)
Geologic Sediments/chemistry , Groundwater/chemistry , Models, Chemical , Radioactive Pollutants/analysis , Uranium/analysis , Adsorption , Georgia , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Kaolin/chemistry , Minerals/chemistry , Quartz/chemistry , Radioactive Pollutants/chemistry , Uranium/chemistry
19.
Environ Sci Technol ; 45(11): 4771-7, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21539349

ABSTRACT

Technetium-99 (Tc) in nuclear waste is a significant environmental concern due to its long half-life and high mobility in the subsurface. Reductive precipitation of technetium(IV) oxides [TcO(2)(s)] is an effective means of immobilizing Tc, thereby impeding its migration in groundwater. However, technetium(IV) oxides are subject to dissolution by oxidants and/or complexing agents. In this study we ascertain the effects of a synthetic organic ligand, ethylenediaminetetraacetate (EDTA), and two natural humic isolates on the dissolution and solubility of technetium(IV) oxides. Pure synthetic technetium(IV) oxide (0.23 mM) was used in batch experiments to determine dissolution kinetics at pH ∼6 under both reducing and oxidizing conditions. All organic ligands were found to enhance the dissolution of technetium(IV) oxides, increasing their solubility from ∼10(-8) M (without ligands) to 4 × 10(-7) M under strictly anoxic conditions. Reduced Tc(IV) was also found to reoxidize rapidly under oxic conditions, with an observed oxidative dissolution rate approximately an order of magnitude higher than that of ligand-promoted dissolution under reducing conditions. Significantly, oxidative dissolution was inhibited by EDTA but enhanced by humic acid compared to experiments without any complexing agents. The redox functional properties of humics, capable of facilitating intramolecular electron transfer, may account for this increased oxidation rate under oxic conditions. Our results highlight the importance of complex interactions for the stability and mobility of Tc and thus for the long-term fate of Tc in contaminated environments.


Subject(s)
Radioactive Pollutants/chemistry , Technetium Compounds/chemistry , Anaerobiosis , Ligands , Organic Chemicals/chemistry , Oxidation-Reduction
20.
Environ Sci Technol ; 45(7): 2718-24, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21366306

ABSTRACT

To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)2(0). Binding constants were found to be 6.8 and between 3.9 and 4.3, for logß1,-1,1 and logß1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 and 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, whereas TcO(OH)2(0) and TcO(OH)2-HA are the major species, in the pH 6-8 range.


Subject(s)
Humic Substances/analysis , Soil Pollutants, Radioactive/chemistry , Technetium/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...