Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Front Vet Sci ; 11: 1393372, 2024.
Article in English | MEDLINE | ID: mdl-38983772

ABSTRACT

Introduction: The ratio of lysine (Lys) to methionine (Met) with 3.0: 1 is confirmed as the "ideal" profile for milk protein synthesis, but whether this ratio is suitable for milk protein synthesis under HS needs to be further studied. Methods: To evaluate the molecular mechanism by which HS and Lys to Met ratios affect mammary cell functional capacity, an immortalized bovine mammary epithelial cell line (MAC-T) is incubated with 5 doses of Met while maintaining a constant concentration of Lys. The MAC-T cells was treated for 6 h as follow: Lys: Met 3.0: 1 (control 37°C and IPAA 42°C) or treatments under HS (42°C) with different ratios of Lys: Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.5: 1 (LM35) and 4.0: 1 (LM40). RNA sequencing was used to assess transcriptome-wide alterations in mRNA abundance. Results: The significant difference between control and other groups was observed base on PCA analysis. A total of 2048 differentially expressed genes (DEGs) were identified in the IPAA group relative to the control group. Similarly, 226, 306, 148, 157 DEGs were detected in the LM20, LM25, LM35 and LM40 groups, respectively, relative to the IPAA group. The relative mRNA abundance of HSPA1A was upregulated and anti-apoptotic genes (BCL2L1 and BCL2) was down-regulated in the IPAA group, compared to the control group (p < 0.05). Compared with the IPAA group, the relative mRNA abundance of anti-apoptotic genes and casein genes (CSN1S2 and CSN2) was up-regulated in the LM25 group (p < 0.05). The DEGs between LM25 and IPAA groups were associated with the negative regulation of transcription RNA polymerase II promoter in response to stress (GO: 0051085, DEGs of BAG3, DNAJB1, HSPA1A) as well as the mTOR signaling pathway (ko04150, DEGs of ATP6V1C2, WNT11, WNT3A, and WNT9A). Several DEGs involved in amino acids metabolism (AFMID, HYKK, NOS3, RIMKLB) and glycolysis/gluconeogenesis (AFMID and MGAT5B) were up-regulated while DEGs involved in lipolysis and beta-oxidation catabolic processes (ALOX12 and ALOX12B) were down-regulated. Conclusion: These results suggested that increasing Met supply (Lys: Met at 2.5: 1) may help mammary gland cells resist HS-induced cell damage, while possibly maintaining lactation capacity through regulation of gene expression.

2.
J Agric Food Chem ; 72(2): 983-998, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38189273

ABSTRACT

Microbial transplantation in early life was a strategy to optimize the health and performance of livestock animals. This study aimed to investigate the effect of active ruminal solids microorganism supplementation on newborn lamb gut microbiota and serum metabolism. Twenty-four Youzhou dark newborn lambs were randomly divided into three groups: (1) newborn lambs fed with sterilized goat milk inoculated with sterilized normal saline (CON), supernatant from ruminal solids (SRS), or autoclaved supernatant from ruminal solids (ASRS). Results showed that SRS increased gut bacterial richness and community, downregulating the Firmicutes/Bacteroidetes ratio, and increased the abundance of some probiotics (Bacteroidetes, Spirochaetota, and Fibrobacterota), while reducing the abundance of Fusobacteriota, compared to the CON group. SRS also improved the plasma metabolic function, such as arachidonic acid metabolism, primary bile acid biosynthesis, and tryptophan metabolism and then actively promoted the levels of ALP and HLD. Our study indicated that inoculation with active ruminal solids significantly affected the intestinal microbial communities and metabolic characteristics, and these changes can improve the growing health of the newborn lamb. These findings provided an experimental and theoretical basis for the application of ruminal solid-attached microorganisms in the nutritional management of lambs reared for human consumption.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Sheep , Animals, Newborn , Diet/veterinary , Goats/metabolism , Sheep, Domestic , Bacteria/genetics , Metabolome , Rumen/metabolism , Animal Feed/analysis
3.
Med Oncol ; 41(1): 23, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114688

ABSTRACT

Identifying proteins associated with the onset of early intestinal-type gastric cancer (EIGC) can yield valuable insights into the pathogenesis of this specific subtype of gastric cancer. Data-independent acquisition mass spectroscopy (DIA-MS) was utilized to identify the differential protein between 10 cases of EIGC and atrophic gastritis with intestinal metaplasia (NGC). The expressions of IPO4, TBL1XR1, p62/SQSTM1, PKP3, and CRTAP were verified by immunohistochemistry (IHC) in 20 EIGC samples, 17 gastric low-grade intraepithelial neoplasia (LGIN) samples, and 21 healthy controls. The prognostic values of the five genes were validated in the transcriptome data by survival analysis. A total of 4,028 proteins were identified using DIA-MS and a total of 177 differential proteins were screened with log2(fold change) > 1.5. Among them, 113 proteins were significantly up-regulated, and 64 proteins were significantly down-regulated in EIGC tissues. IHC results showed that proteins IPO4, TBL1XR1, p62/SQSTM1, PKP3, and CRTAP were highly expressed in the cytoplasm of EIGC and LGIN, which was consistent with the results of DIA-MS. Among them, p62/SQSTM1 may undergo nuclear-cytoplasmic transfer. The five protein-coding genes were associated with intestinal-type gastric cancer survival and exhibited differential expression across various disease stages. The study successfully identified differentially expressed proteins between EIGC and NGC, providing potential biomarkers and valuable insights into the mechanism underlying intestinal-type gastric cancer.


Subject(s)
Carcinoma in Situ , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Transcriptome , Mass Spectrometry
4.
Sci Rep ; 13(1): 10233, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353533

ABSTRACT

Transportation stress is one of the most serious issues in the management of yak. Previous studies have demonstrated that transport stress is caused by a pro-oxidant state in the animal resulting from an imbalance between pro-oxidant and antioxidant status. In this context, vitamin C has the ability to regulate reactive oxygen species (ROS) synthesis and alleviate oxidative stress. Although this effect of vitamin C is useful in pigs, goats and cattle, the effect of vitamin C on the mitigation of transport stress in yaks is still unclear. The purpose of this study was to better assess the metabolic changes induced by the action of vitamin C in yaks under transportation stress, and whether these changes can influence antioxidant status. After the yaks arrived at the farm, control or baseline blood samples were collected immediately through the jugular vein (VC_CON). Then, 100 mg/kg VC was injected intramuscularly, and blood samples were collected on the 10th day before feeding in the morning (VC). Relative to the control group, the VC injection group had higher levels of VC. Compared with VC_CON, VC injection significantly (P < 0.05) decreased the blood concentrations of ALT, AST, T-Bil, D-Bil, IDBIL, UREA, CRP and LDH. However, VC injection led to greater (P < 0.05) AST/ALT and CREA-S relative to VC_CON. There was no difference (P > 0.05) in GGT, ALP, TBA, TP, ALBII, GLO, A/G, TC, TG, HDL-C, LDL-C, GLU and L-lactate between VC_CON and VC. The injection of VC led to greater (P < 0.05) concentration of MDA, but did not alter (P > 0.05) the serum concentrations of LPO and ROS. The injection of VC led to greater (P < 0.05) serum concentrations of POD, CAT and GSH-PX. In contrast, lower (P < 0.05) serum concentrations of SOD, POD and TPX were observed in VC relative to VC_CON. No difference (P > 0.05) in GSH, GSH-ST and GR was observed between VC_CON and VC. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 156 differential metabolites with P < 0.05 and a variable importance in projection (VIP) score > 1.5 in the VC injection group. The injection of VC resulted in significant changes to the intracellular amino acid metabolism of glutathione, glutamate, cysteine, methionine, glycine, phenylalanine, tyrosine, tryptophan, alanine and aspartate. Overall, our study indicated that VC injections were able to modulate antioxidant levels by affecting metabolism to resist oxidative stress generated during transport.


Subject(s)
Antioxidants , Ascorbic Acid , Cattle , Animals , Swine , Antioxidants/metabolism , Reactive Oxygen Species/pharmacology , Ascorbic Acid/metabolism , Oxidative Stress , Glutathione/metabolism
5.
Pharmacogenet Genomics ; 33(5): 101-110, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37261937

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS: An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS: mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1ß levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION: These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.


Subject(s)
Autism Spectrum Disorder , Valproic Acid , Rats , Animals , Mice , Humans , Valproic Acid/adverse effects , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Protein Serine-Threonine Kinases/adverse effects , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Signal Transduction , Apoptosis , Phosphatidylinositols/adverse effects , Serine/adverse effects , Disease Models, Animal
6.
Front Microbiol ; 14: 1128271, 2023.
Article in English | MEDLINE | ID: mdl-36860489

ABSTRACT

This study evaluated the effects of inoculation with adult goat ruminal fluid on growth, health, gut microbiota and serum metabolism in lambs during the first 15 days of life. Twenty four Youzhou dark newborn lambs were selected and randomly distributed across 3 treatments (n = 8/group): autoclaved goat milk inoculated with 20 mL sterilized normal saline (CON), autoclaved goat milk inoculated with 20 mL fresh ruminal fluid (RF) and autoclaved goat milk inoculated with 20 mL autoclaved ruminal fluid (ARF). Results showed that RF inoculation was more effective at promoting recovery of body weight. Compared with CON, greater serum concentrations of ALP, CHOL, HDL and LAC in the RF group suggested a better health status in lambs. The relative abundance of Akkermansia and Escherichia-Shigella in gut was lower in the RF group, whereas the relative abundance of Rikenellaceae_RC9_gut_group tended to increase. Metabolomics analysis shown that RF stimulated the metabolism of bile acids, small peptides, fatty acids and Trimethylamine-N-Oxide, which were found the correlation relationship with gut microorganisms. Overall, our study demonstrated that ruminal fluid inoculation with active microorganisms had a beneficial impact on growth, health and overall metabolism partly through modulating the gut microbial community.

7.
PLoS One ; 17(12): e0278660, 2022.
Article in English | MEDLINE | ID: mdl-36459516

ABSTRACT

This study was aimed to evaluate the effects of post-transportation vitamin E (VE) supplementation on health condition, blood biochemical parameters, blood antioxidant indices and blood metabolomics in yak. Five yaks were used in this study. After 2100 km of highway transportation from Riwoqe county to Rongchang County, Chongqing, blood was collected immediately after arrival and these samples served as the baseline (control, CON_VE). A VE injection (40 mg/kg) was then performed and blood samples were collected 10 days later. Injection of VE led to lower serum VE concentration. Relative to the CON_VE, VE injection led to greater concentrations of creatinine and lower concentrations of glutamate pyruvic transaminase, alkaline phosphatase, aspartate aminotransferase, total bilirubin, indirect bilirubin, direct bilirubin, UREA and glucose. Compared with CON_VE, VE injection led the lower serum level of malondialdehydeand greater serum level of glutathione s-transferase, glutathione peroxidase, glutathione reductase and glutathione peroxidase 4. Based on metabolomics analysis, 119 differentially altered serum metabolites (P<0.05 and VIP>1.0) were identified with VE injection relative to CON_VE. VE injection resulted in changes of lysophosphatidylethanolamine, lysophosphatidylcholine, phosphocholine, choline, malate, citrate, α-Oxo-glutarate, phenylalanine, 3-Phenylpropanoic acid and 3-(3-Hydroxyphenyl) propanoic acid. These metabolites are associated with lipid metabolism, tricarboxylic acid cycle and oxidative stress. Overall, our study indicates that VE injection can alleviate transportation stress in yak partly through protecting liver and kidney, and improving antioxidant defense systems.


Subject(s)
Antioxidants , Immunotherapy , Cattle , Animals , Vitamin E , Bilirubin , Dietary Supplements
8.
Physiol Genomics ; 54(9): 325-336, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35723222

ABSTRACT

Troxerutin is known for its anti-inflammatory and antioxidative effects in nerve impairment. The purpose of this study is to investigate the effect of troxerutin and cerebroprotein hydrolysate injections (TCHis) on prenatal valproic acid (VPA)-exposed rats. The VPA was administered to pregnant rats on gestational day 12.5 to induce a model of autism. The offspring were given the treatment of TCHis on postnatal day (PND) 21-50. On PND 43-50, the behavioral analysis of offspring was performed after the treatment of TCHis for 1 h. On PND 50, the offspring were harvested and the brains were collected. The hippocampus and prefrontal cortex were isolated for relevant biochemical detections. The administration of TCHis increased pain sensitivity and improved abnormal social behaviors in prenatal VPA-exposed rats. Prenatal exposure of VPA induced neuronal loss and apoptosis, enhanced reactive oxygen species (ROS) production, and promoted oxidative stress in hippocampus and prefrontal cortex, whereas these effects were reversed by the postnatal treatment of TCHis. In addition, postnatal administration of TCHis ameliorated mitochondrial function in hippocampus and prefrontal cortex of prenatal VPA-exposed rats. This study concluded that postnatal treatment of TCHis reduced oxidative stress and ameliorated abnormal behavior in a prenatal VPA-induced rat model of autism.


Subject(s)
Autistic Disorder , Prenatal Exposure Delayed Effects , Animals , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Behavior, Animal , Disease Models, Animal , Female , Humans , Hydroxyethylrutoside/analogs & derivatives , Oxidative Stress , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar , Social Behavior , Valproic Acid/pharmacology
9.
Article in English | MEDLINE | ID: mdl-35529925

ABSTRACT

Objectives: Guizhi Fuling Formulation (GZFL), a traditional Chinese medical formulation, consists of Cinnamomi Ramulus, Paeoniae Radix Alba (or Paeoniae Radix Rubra), Moutan Cortex, Persicae Semen, and Poria, with multiple therapeutic functions such as sedation, antitumor activity, anti-inflammation, and neuroprotection. However, its clinical applications remain relatively fragmented, and the underlying mechanisms of GZFL in different diseases are still not very certain. Further research and summary in both application and mechanisms remain to be needed for human health and the best use of GZFL. Therefore, we summarized the multiple pharmacologic effects and possible mechanisms of action of GZFL according to recent 17 years of research. Methods: We retrieved four English and two Chinese databases using these keywords (the formulation name or its synonyms) and searched articles written in English from January 2006 up to February 2022. Key Findings. GZFL exhibits multiple pharmacologic advantages in gynecologic diseases and other expanding diseases such as cancer, blood, and vascular disease, renal failure, inflammation, and brain injury. Possibly due to its diverse bioactive components and pharmacologic activities, GZFL could target the multiple signaling pathways involved in regulating blood circulation, inflammatory and immune factors, proliferation, apoptosis, and so on. Conclusion: This review suggests that GZFL displays promising therapeutic effects for many kinds of diseases, which have been beyond the scope of the original prescription for gynecologic diseases. In this way, we wish to provide a reference and recommendation for further preclinic and clinic studies.

10.
Nutrients ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215505

ABSTRACT

Atherosclerosis (AS) is recognized as the original cause of most cardiovascular and cerebrovascular diseases. The dual-protein (DP) nutrition that consists of soy protein and whey protein is reported to be associated with a reduction in AS; however, the relationship between DP and AS remains ambiguous. Therefore, this study aimed to verify the effect of DP on AS and explore the optimal DP intake to improve AS. ApoE-/- mice were administrated with low- (LDP), middle- (MDP), and high-dose (HDP) DP. The MDP group exhibited significant improvements in AS. In terms of lipid metabolism, the levels of plasma total triglyceride and LDL-C and the mRNA expression levels of Cyp7a1 and PCSK9 were markedly tuned in the MDP group. In addition, the MDP treatment group had a substantially lower inflammatory response and better intestinal barrier function than LDP and HDP groups. The species richness demonstrated by the Chao1 index was distinctly increased in the MDP group, and the relative abundance of intestinal-permeability-protective microbes Blautia and Akkermansia was significantly elevated. In summary, an adequate intake of DP was able to counteract atherosclerosis development in ApoE-/- mice, and this study provides a scientific theoretical basis for the application of DP in the food and pharmaceutical fields.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Diet, High-Fat , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9
11.
Anim Biosci ; 35(2): 184-195, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34474533

ABSTRACT

OBJECTIVE: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. METHODS: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. RESULTS: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. CONCLUSION: The results demonstrated dietary ADY improved ruminal fermentation dosedependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

12.
Front Microbiol ; 12: 770591, 2021.
Article in English | MEDLINE | ID: mdl-34819925

ABSTRACT

Garlic skin, a by-product of garlic processing, was supposed to improve the fermentation quality of high-moisture silages because of its low moisture content and active compounds. Thus, fermentation and microbial characteristics of high-moisture Pennisetum hydridum ensiled with the addition of 0, 10, 20, and 30 wt% garlic skin (on a fresh matter basis) were analyzed during a 60-days fermentation. Results showed that the addition of garlic skin increased the dry matter content and lactic acid production, and decreased the pH and ammonia-N content of the silage. Adding garlic skin changed the relative abundance of bacterial communities with an increase in Lactobacillus and a decrease in Clostridium relative abundance. In conclusion, co-ensiling of high-moisture Pennisetum hydridum with garlic skin could be a simple approach to improve the silage quality and nutrients preservation.

13.
Animals (Basel) ; 11(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34827885

ABSTRACT

Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.

14.
Toxins (Basel) ; 12(6)2020 06 11.
Article in English | MEDLINE | ID: mdl-32545333

ABSTRACT

Mastitis is usually caused by a variety of pathogenic bacteria that include both Gram-positive and Gram-negative bacteria. Lipopolysaccharide (LPS) is the pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria, and peptidoglycan (PGN) and lipoteichoic acid (LTA) are those of Gram-positive bacteria. The effects of LPS, PGN and/or LTA on inflammatory response and lactation in bovine mammary epithelial cells (BMECs) are well studied, but the epigenetic mechanisms of their effects received less attention. Furthermore, since the three PAMPs are often simultaneously present in the udder of cows with mastitis, it has implications in practice to study their additive effects. The results show that co-stimulation of bovine mammary epithelial cells with PGN, LTA, and LPS induced a higher number of differentially expressed genes (DEGs) and greater expressions of inflammatory factors including interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor-α (TNF-α), chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6. In addition, co-stimulation further increased DNA hypomethylation compared with sole LPS stimulation. Co-stimulation greatly decreased casein expression but did not further decrease histone acetylation levels and affect the activity of histone acetyltransferase (HAT) and histone deacetylase (HDAC), compared with sole LPS stimulation. Collectively, this study demonstrated that PGN, LTA, and LPS had an additive effect on inducing transcriptome changes and inflammatory responses in BMECs, probably through inducing a greater decrease in DNA methylation. Co-stimulation with PGN, LTA, and LPS decreased casein expression to a greater degree, but it might not be linked to histone acetylation and HAT and HDAC activity.


Subject(s)
Epigenesis, Genetic/drug effects , Inflammation Mediators/metabolism , Lactation/drug effects , Mammary Glands, Animal/drug effects , Mastitis/microbiology , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Transcriptome/drug effects , Animals , Cattle , Cell Line , Cytokines/genetics , Cytokines/metabolism , DNA Methylation/drug effects , Drug Synergism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lipopolysaccharides/pharmacology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/physiopathology , Mastitis/genetics , Mastitis/metabolism , Mastitis/physiopathology , Peptidoglycan/pharmacology , Teichoic Acids/pharmacology
15.
Toxins (Basel) ; 12(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283626

ABSTRACT

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis, and S. aureus generally causes subclinical mastitis which is more persistent and resistant to treatment. Peptidoglycan (PGN) and lipoteichoic acid (LTA) are cell wall components of S. aureus. Although the roles of PGN and LTA in causing inflammation are well studied, the epigenetic mechanisms of the effects of PGN and LTA on the inflammation and lactation remain poorly understood. This study characterized the gene expression profiling by RNA sequencing and investigated DNA methylation and histone acetylation in relation to inflammation and lactation in the immortalized bovine mammary epithelial cell line (MAC-T). The cells were cultured for 24 h with neither PGN nor LTA (CON), PGN (30 µg/mL), LTA (30 µg/mL), and PGN (30 µg/mL) + LTA (30 µg/mL), respectively. The number of differentially expressed genes (DEGs) and the expression of proinflammatory factors including interleukin (IL)-1ß, IL-6, IL-8, chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6 of the treatments increased in the following order: CON < PGN < LTA < PGN + LTA, and the DEGs mainly enriched on the cytokine-cytokine receptor interaction and chemokine signaling pathway. LTA and PGN + LTA induced hypomethylation of global DNA by suppressing DNA methyltransferase (DNMT) activity. PGN and LTA, alone or combined, decreased the mRNA expression of casein genes (CSN1S1, CSN2, and CSN3) and the expression of two caseins (CSN2 and CSN3), and reduced histone H3 acetylation by suppressing histone acetyltransferase (HAT) activity and promoting histone deacetylase (HDAC) activity. Collectively, this study revealed that PGN and LTA induced inflammation probably due to decreasing DNA methylation through regulating DNMT activity, and decreased lactation possibly through reducing histone H3 acetylation by regulating HAT and HDAC activity in bovine mammary epithelial cells.


Subject(s)
DNA Methylation , Epithelial Cells/microbiology , Histones/metabolism , Lactation , Lipopolysaccharides/metabolism , Mammary Glands, Animal/microbiology , Mastitis/microbiology , Peptidoglycan/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Acetylation , Animals , Cattle , Cell Line , Cytokines/genetics , Cytokines/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Epithelial Cells/metabolism , Female , Gene Regulatory Networks , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Host-Pathogen Interactions , Inflammation Mediators/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/physiopathology , Mastitis/genetics , Mastitis/metabolism , Mastitis/physiopathology , Protein Processing, Post-Translational , Staphylococcal Infections/genetics , Staphylococcal Infections/metabolism , Staphylococcal Infections/physiopathology , Transcriptome
16.
Animals (Basel) ; 10(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952136

ABSTRACT

Lipid is the chief energy source for starved animals. ß-hydroxybutyrate (BHBA) is the main ketone body produced by lipid decomposition. In Chinese hamster ovary (CHO) cell experiment, it was found that BHBA could be used not only as an energy substance, but also as a ligand of GPR109A for regulating lipid metabolism. However, whether BHBA can regulate lipid metabolism of yaks, and its effective concentration and signal pathway are not clear. This study investigated the effects and mechanism of starvation and BHBA on the lipid metabolism of yak. Eighteen male Jiulong yaks were selected and then randomly divided into three groups: normal feeding group (NG), starvation group (SG), and starvation with BHBA infusion group (SBG). The yaks in the NG group were freely fed during the trial, while the yaks in the SG and SBG groups fasted; from 7th to 9th days of the experiment, the NG and SG were infused continuous with 0.9% normal saline and SBG was infused 1.7 mmol/L BHBA solution respectively. The blood samples were collected on the 0th, 1st, 3rd, 5th, 7th, and 9th day of experiment. The subcutaneous adipose tissue of all the yaks in this study were taken from live bodies after infusion. Serum glucose, lipid metabolites, hormone concentrations, and mRNA and protein expressions of key factors of lipid metabolism and signaling pathway in subcutaneous adipose tissue were measured. The results showed that, as compared with NG, starvation significantly reduced the body weight of yak in SG, and significantly increased the concentration of BHBA in serum and the mRNA expression of PKA and CREB1 in subcutaneous adipose tissue, while the mRNA expression of MEK, PKC, ERK1/2, the area of adipocytes, and the proportion of saturated fatty acid were decreased. Whereas, further increase of BHBA concentration through infusion promoted the mRNA expression of GPR109A receptor in the subcutaneous adipose tissue of SBG, inhibited the mRNA expression of AC and PKA, and decreased the phosphorylation protein abundance of CREB1, and significantly increased the diameter and area of adipocytes. These findings suggest that starvation led to enhanced lipid catabolism in yaks. An increasing BHBA concentration could increase the mRNA expression of GPR109A receptor in subcutaneous adipose tissue and inhibit the cAMP/PKA/CREB signaling pathway and lipid decomposition.

17.
Invest New Drugs ; 38(2): 321-328, 2020 04.
Article in English | MEDLINE | ID: mdl-31087222

ABSTRACT

Pancreatic cancer (PC) is one of the most lethal gastrointestinal malignancies. The PTEN/AKT signalling pathway is closely related to the tumourigenesis and progression of PC. The downstream effectors, FOXO3a, PLZF and VEGF, are reported to be involved in angiogenesis, lymph node metastasis and poor survival in PC. By using tissue microarrays and immunohistochemistry, we found, that PTEN, FOXO3a and PLZF expression was significantly decreased in PC specimens compared with that in chronic pancreatitis (CP) specimens, while VEGF expression was significantly increased. Furthermore, the expression of PTEN was positively correlated with that of FOXO3a and PLZF but negatively correlated with that of VEGF. Our results suggest that the PTEN/FOXO3a/PLZF signalling pathway may negatively regulate VEGF expression in PC. Through clinical analysis of 69 PC patients, PTEN, FOXO3a and PLZF expression was found to be significantly decreased in specimens from PC patients with lymph node metastasis and poor prognosis, while VEGF expression was significantly increased. Taken together, these reaults suggest that the PTEN/FOXO3a/PLZF signalling pathway may be capable of inhibiting growth and metastasis in PC by regulating VEGF-mediated angiogenesis, which requires further in vivo and in vitro studies and can potentially be a therapeutic target for PC.


Subject(s)
Forkhead Box Protein O3/metabolism , PTEN Phosphohydrolase/metabolism , Pancreatic Neoplasms/metabolism , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Adult , Aged , Aged, 80 and over , Carcinogenesis , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis/pathology , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/mortality , Neovascularization, Pathologic/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
18.
Brain Behav Immun ; 82: 45-62, 2019 11.
Article in English | MEDLINE | ID: mdl-31376499

ABSTRACT

A chronic neuroinflammatory response has been considered as a critical pathogenesis promoting neurodegenerative progression in Alzheimer's disease (AD). During neuroinflammatory process, microglia are excessively activated and simultaneously release numerous pro-inflammatory mediators that cause synaptic dysfunction in the forebrain prior to neuronal degeneration and memory deficits in AD. Thus, prevention of neuroinflammation-mediated synaptic dysfunction may be a potential therapeutic approach against neurodegenerative disorders. Trans-cinnamaldehyde (TCA) is a primary bioactive component derived from the stem bark of Cinnamomum cassia, and it possesses potent anti-inflammatory and neuroprotective activities in in vivo and in vitro experiments. However, the in-depth molecular mechanisms of TCA underlying anti-neuroinflammatory and neuroprotective effects on memory deficits in AD are still unclear. The presenilin 1 and 2 conditional double knockout (PS cDKO) mice exhibit AD-like phenotypes including obvious neuroinflammatory responses and synaptic dysfunction and memory deficits. Here, PS cDKO were used to evaluate the potential neuroprotective effects of TCA against neuroinflammation-mediated dementia by performing behavioral tests, electrophysiological recordings and molecular biology analyses. We observed that TCA treatment reversed abnormal expression of synaptic proteins and tau hyperphosphorylation in the hippocampus and prefrontal cortex of PS cDKO mice. TCA treatment also ameliorated NMDA receptor (NMDAR) dysfunction including impaired NMDAR-mediated responses and long-term potentiation (LTP) induction in the hippocampus of PS cDKO mice. Moreover, TCA possesses an ability to suppress neuroinflammatory responses by diminishing microglial activation and levels of pro-inflammatory mediators in the hippocampus and prefrontal cortex of PS cDKO mice. Importantly, improving NMDAR dysfunction and memory deficits of PS cDKO mice was due to the inhibition of neuroinflammatory responses through TCA's interruptive effect on the nuclear factor kappa B (NF-κB) signaling pathway. Therefore, TCA may be a potential anti-neuroinflammatory agent for deterring neurodegenerative progression of AD.


Subject(s)
Acrolein/analogs & derivatives , Alzheimer Disease/metabolism , NF-kappa B/metabolism , Acrolein/metabolism , Acrolein/pharmacology , Animals , Female , Hippocampus/metabolism , I-kappa B Proteins/metabolism , Long-Term Potentiation/physiology , Male , Memory Disorders/physiopathology , Mice , Mice, Knockout , Microglia/metabolism , N-Methylaspartate , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/genetics , Presenilin-2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/drug effects
19.
BMC Vet Res ; 15(1): 267, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31357995

ABSTRACT

BACKGROUND: In practical production, dairy cows are frequently exposed to bacterial endotoxin (lipopolysaccharide, LPS) when they are subjected to high-concentrate diets, poor hygienic environments, as well as mastitis and metritis. Histone acetylation is an important epigenetic control of DNA transcription and a higher histone acetylation is associated with facilitated transcription. LPS might reduce histone acetylation in the mammary epithelial cells, resulting in lower transcription and mRNA expression of lactation-related genes. This study was conducted to investigate the effect of LPS on histone acetylation in bovine mammary epithelial cells and the efficacy of sodium butyrate (SB) in suppressing the endotoxin-induced adverse effect. Firstly, the bovine mammary epithelial cell line MAC-T cells were treated for 48 h with LPS at different doses of 0, 1, 10, 100, and 1000 endotoxin units (EU)/mL (1 EU = 0.1 ng), and the acetylation levels of histones H3 and H4 as well as the histone deacetylase (HDAC) activity were measured. Secondly, the MAC-T cells were treated for 48 h as follows: control, LPS (100 EU/mL), and LPS (100 EU/mL) plus SB (10 mmol/L), and the acetylation levels of histones H3 and H4 as well as milk gene mRNA expressions were determined. RESULTS: The results showed that HDAC activity increased linearly with increasing LPS doses (P < 0.01). The histone H3 acetylation levels were significantly reduced by LPS, while the histone H4 acetylation levels were not affected by LPS (P > 0.05). Sodium butyrate, an inhibitor of HDAC, effectively suppressed the endotoxin-induced decline of histone H3 acetylation (P < 0.05). As a result, SB significantly enhanced the mRNA expression of lactation-related genes (P < 0.05). CONCLUSIONS: The results suggest one of the adverse effects of LPS on the lactation of bovine mammary gland epithelial cells was due to decreasing histone H3 acetylation through increasing HDAC activity, whereas the endotoxin-induced adverse effects were effectively suppressed by SB.


Subject(s)
Butyric Acid/pharmacology , Endotoxins/toxicity , Epithelial Cells/drug effects , Histones/metabolism , Mammary Glands, Animal/drug effects , Acetylation/drug effects , Animals , Cattle , Female , Histamine Antagonists/pharmacology , Mammary Glands, Animal/cytology
20.
Toxins (Basel) ; 11(5)2019 05 24.
Article in English | MEDLINE | ID: mdl-31137708

ABSTRACT

Bacterial lipopolysaccharide (LPS) could result in poor lactation performance in dairy cows. High methylation of DNA is associated with gene repression. However, it is unclear whether LPS could suppress the expression of lactation-related genes by inducing DNA methylation. Therefore, the objective of this study was to investigate the impact of LPS on genome-wide DNA methylation, using methylated DNA immunoprecipitation with high-throughput sequencing (MeDIP-seq) and on the promoter methylation of lactation-related genes using MassArray analysis in bovine mammary epithelial cells. The bovine mammary epithelial cell line MAC-T cells were treated for 48 h with LPS at different doses of 0, 1, 10, 100, and 1000 endotoxin units (EU)/mL (1 EU = 0.1 ng). The results showed that the genomic methylation levels and the number of methylated genes in the genome as well as the promoter methylation levels of milk genes increased when the LPS dose was raised from 0 to 10 EU/mL, but decreased after further increasing the LPS dose. The milk gene mRNA expression levels of the 10 EU/mL LPS treatment were significantly lower than these of untreated cells. The results also showed that the number of hypermethylated genes was greater than that of hypomethylated genes in lipid and amino acid metabolic pathways following 1 and 10 EU/mL LPS treatments as compared with control. By contrast, in the immune response pathway the number of hypomethylated genes increased with increasing LPS doses. The results indicate LPS at lower doses induced hypermethylation of the genome and promoters of lactation-related genes, affecting milk gene mRNA expression. However, LPS at higher doses induced hypomethylation of genes involved in the immune response pathway probably in favor of immune responses.


Subject(s)
DNA Methylation/drug effects , Epithelial Cells/drug effects , Lactation/genetics , Lipopolysaccharides/pharmacology , Mammary Glands, Animal/cytology , Animals , Cattle , Cell Line , Epithelial Cells/metabolism , Female , Gene Expression Regulation/drug effects , Genome/drug effects , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...