Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 352: 141276, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280652

ABSTRACT

Microbes may induce endogenous phosphorus (P) migration from lacustrine sediment. This study focused on the role of phosphate-solubilizing bacteria (PSB) disturbance in affecting the sediment P release and further contributing to cyanobacterial recruitment in Meiliang Bay, Lake Taihu. Gluconic acid was the main mechanism of phosphate solubilizing by PSB. The dominant PSB (Burkholderia) isolated from eutrophic lake sediments was used as a representative to investigate the effects of disturbance on endogenous P release using diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper). The results show that soluble reactive phosphorus (SRP) and iron (Fe (II)) concentrations could reach 0.51 mg L-1 and 33.56 mg L-1 in pore water, respectively. And the sediment DGT-P and DGT-Fe were relatively reduced by PSB. Subsequent the chlorophyll a (Chl a) concentrations reached peaks of 344.8 µg L-1 in overlying water. The abundance of the dominant PSB (Burkholderia-Caballeronia-Paraburkholderia) were significantly associated with Chl a (P < 0.05) and algal effective state phosphorus (AAP) (P < 0.05), respectively. PSB mainly regulates AAP leaching to pore water and then diffusing across the sediment-water interface to the overlying water, producing the effect of cyanobacteria recruitment. The results provide new insights into early management of cyanobacterial resuscitation in a large eutrophic lake.


Subject(s)
Cyanobacteria , Water Pollutants, Chemical , Phosphates , Lakes , Chlorophyll A , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Renal Dialysis , Phosphorus/analysis , Water , China
SELECTION OF CITATIONS
SEARCH DETAIL
...