Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 172: 104748, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518041

ABSTRACT

Flixweed (Descurainia sophia L.) is widely distributed in winter wheat (Triticum aestivum L.) fields in the North China Plain and has evolved resistance to herbicides, including the acetolactate synthase (ALS) inhibitor florasulam. However, the florasulam resistance status of flixweed in the North China Plain is poorly understood, which hinders the integrated management of this weed in winter wheat production systems. Thus, 45 flixweed populations were collected in wheat fields in these areas, and their sensitivity to florasulam and ALS-inhibitor-resistant mutation diversity were assessed. Meanwhile, alternative herbicides/herbicide mixtures for the control of florasulam-resistant flixweed were screened and evaluated under greenhouse and field conditions. Of the populations, 30 showed florasulam resistance (RRR and RR), 9 had a high risk of evolving florasulam resistance (R?) and 6 were susceptible. These populations had 5.3 to 345.1-fold resistance to florasulam, and 4 ALS resistance mutations (P197H, P197S, P197T and W574L) were observed. The subsequent herbicide sensitivity assay showed that the SD-06 population (with ALS1 P197T and ALS2 W574L mutations) exhibited cross-resistance to all ALS inhibitors tested, but was sensitive to MCPA-Na, fluroxypyr, carfentrazone-ethyl and bipyrazone. Meanwhile, the other HN-07 population with non-target-site resistance (NTSR) also showed resistance to all tested ALS inhibitors, and it was "R?" to MCPA-Na while sensitive to fluroxypyr, carfentrazone-ethyl and bipyrazone. The field experiments were conducted at the research farm where the SD-06 population was collected, and the results suggested that florasulam at 3.75-4.5 g ai ha-1 had little efficacy (0.6-12.1%), whereas MCPA-Na + carfentrazone-ethyl (87.1-91.2%) and bipyrazone+fluroxypyr (90.1-97.8%) controlled the resistant flixweed.


Subject(s)
Acetolactate Synthase , Herbicides , Acetolactate Synthase/genetics , Arylsulfonates/toxicity , China , Herbicide Resistance/genetics , Herbicides/toxicity , Pyrimidines , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...