Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 24(1): 289, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098107

ABSTRACT

BACKGROUND: Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown. RESULTS: We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava accessions. We detect 18,218 significant marker-metabolite associations via metabolic genome-wide association mapping and identify 12 candidate genes responsible for the levels of metabolites that are of potential nutritional importance. Me3GT, MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cyanogenic glucoside metabolism, respectively, are functionally validated through in vitro enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are highly co-expressed and their allelic combination contributes to low linamarin content. We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, thus controlling SR endothelium color. We find human selection affects quercetin 3-O-glucoside content and SR weight per plant. The candidate gene MeFLS1 is subject to selection during cassava domestication, leading to decreased quercetin 3-O-glucoside content and thus increased SR weight per plant. CONCLUSIONS: These findings reveal the genetic basis of cassava SR metabolome variation, establish a linkage between metabolites and agronomic traits, and offer useful resources for genetically improving the nutrition of cassava and other root crops.


Subject(s)
Genome-Wide Association Study , Manihot , Humans , Manihot/genetics , Domestication , Quercetin/metabolism , Glucosides , Nutrients
2.
Clin Transl Med ; 10(5): e189, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32997403

ABSTRACT

BACKGROUND: Dyslipidaemia contributes to the progression of coronary artery disease (CAD) toward adverse outcomes. Plasma lipidomic measure may improve the prognostic performances of clinical endpoints of CAD. Our research is designed to identify the correlations between plasma lipid species and the risks of death, major adverse cardiovascular event (MACE) and left ventricular (LV) remodeling in patients with CAD. METHODS: A total of 1569 Chinese patients with CAD, 1011 single-centre patients as internal training cohort, and 558 multicentre patients as external validation cohort, were enrolled. The concentration of plasma lipids in both cohorts was determined through widely targeted lipidomic profiling. Least absolute shrinkage and selection operator Cox and multivariate Cox regressions were used to develop prognostic models for death and MACE, respectively. RESULTS: Ten (Cer(d18:1/20:1), Cer(d18:1/24:1), PE(30:2), PE(32:0), PE(32:2), PC(O-38:2), PC(O-36:4), PC(16:1/22:2), LPC(18:2/0:0) and LPE(0:0/24:6)) and two (Cer(d18:1/20:1) and LPC(20:0/0:0)) lipid species were independently related to death and MACE, respectively. Cer(d18:1/20:1) and Cer(d18:1/24:1) were correlated with LV remodeling (P < .05). The lipidic panel incorporating 10 lipid species and two traditional biomarkers for predicting 5-year death risk represented a remarkable higher discrimination than traditional model with increased area under the curve from 76.56 to 83.65%, continuous NRI of 0.634 and IDI of 0.131. Furthermore, the panel was successfully used in differentiating multicentre patients with low, middle, or high risks (P < .0001). Further analysis indicated that the number of double bonds of phosphatidyl choline and the content of carbon atoms of phosphatidyl ethanolamines were negatively associated with death risk. CONCLUSIONS: Improvement in the prediction of death confirms the effectiveness of plasma lipids as predictors to risk classification in patients with CAD. The association between the structural characteristics of long-chain polyunsaturated fatty acids and death risk highlights the need for mechanistic research that characterizes the role of individual lipid species in disease pathogenesis.

3.
Mol Plant ; 13(1): 112-127, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31669581

ABSTRACT

Qingke (Tibetan hulless barley) has long been cultivated and exposed to long-term and strong UV-B radiation on the Tibetan Plateau, which renders it an ideal species for elucidating novel UV-B responsive mechanisms in plants. Here we report a comprehensive metabolite profiling and metabolite-based genome-wide association study (mGWAS) using 196 diverse qingke and barley accessions. Our results demonstrated both constitutive and induced accumulation, and common genetic regulation, of metabolites from different branches of the phenylpropanoid pathway that are involved in UV-B protection. A total of 90 significant mGWAS loci for these metabolites were identified in barley-qingke differentiation regions, and a number of high-level metabolite trait alleles were found to be significantly enriched in qingke, suggesting co-selection of various phenylpropanoids. Upon dissecting the entire phenylpropanoid pathway, we identified some key determinants controlling natural variation of phenylpropanoid content, including three novel proteins, a flavone C-pentosyltransferase, a tyramine hydroxycinnamoyl acyltransferase, and a MYB transcription factor. Our study, furthermore, demonstrated co-selection of both constitutive and induced phenylpropanoids for UV-B protection in qingke.


Subject(s)
Acclimatization , Hordeum/genetics , Plant Leaves/radiation effects , Ultraviolet Rays , Genetic Association Studies , Genome, Plant , Hordeum/radiation effects , Tibet
4.
Front Plant Sci ; 9: 1716, 2018.
Article in English | MEDLINE | ID: mdl-30542359

ABSTRACT

Metabolomics aims at determining a sample's metabolites profile and hence provides a straight functional statement of an organism's physiological condition. Here, we investigated comprehensive profiling, natural variation and species-specific accumulation of both primary and secondary metabolites in foxtail millet using LC-MS, and inheritance patterns of metabolome in millet hybrids. The application of a broad target metabolomics method facilitated the simultaneous identification and quantification of more than 300 metabolites. The metabolic analysis of these compounds, such as flavonoids, phenolamides, hydrocinnamoyl derivatives, vitamins and LPCs, revealed their developmentally controlled accumulation, and natural variation in different tissues/varieties. Species-specific accumulation of secondary metabolites was observed based on a comparative metabolic analysis between millet and rice, such as flavonoid O-rutinosides/neohesperidosides and malonylated flavonoid O-glycosides. In analyzing the metabolic variations between hybrid progenies and their parental lines, including a photothermo-sensitive genic male sterility line and five Zhangzagu varieties, metabolic overdominant, and dominant patterns of inheritance could be observed. For example, hydrocinnamoyl derivatives and feruloylated flavonoids were identified as over-parent heterosis (overdominant) metabolites in milet hybrids. Our work paves the way for developing predictors of hybrid performance and the future analysis of the biosynthesis and regulation of relevant metabolic pathways in millet.

5.
Plant Cell Physiol ; 58(12): 2241-2256, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29069449

ABSTRACT

Normal organ size is achieved by successful co-ordination of cell proliferation and cell expansion, which are modulated by multiple factors such as ethylene and auxin. In our work, SlMBP21-RNAi (RNA interference) tomato exhibited longer sepals and improved fruit set. Histological analysis indicated that longer sepals were attributed to cell expansion. To explore how SlMBP21 regulates sepal size, we compared the transcriptomes of sepals between SlMBP21-RNAi and the wild type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, ethylene and auxin, and photosynthesis. Down-regulation of SlMBP21 affected ethylene production and the free IAA and IAA-Val intensity in sepals. Hormone treatment further indicated that SlMBP21 was involved in the ethylene and auxin pathways. As reported, ethylene and auxin were important factors for cell expansion. Hence, SlMBP21 negatively regulated cell expansion to control sepal size, and ethylene and auxin may mediate this process. Additionally, the contents of Chl and the activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key photosynthetic enzyme, were both increased in SlMBP21-RNAi sepals, which indicated that photosynthesis might be enhanced in transgenic longer sepals. Therefore, the longer sepal, with better protection and enhanced photosynthesis, may contribute to improve fruit set. Altogether, these results suggested that SlMBP21 was a novel factor involved in organ size control. Moreover, our study provided potential application value for improving fruit set.


Subject(s)
Ethylenes/metabolism , Flowers/physiology , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/genetics , Down-Regulation , Flowers/anatomy & histology , Fruit/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Photosynthesis/physiology , Plant Proteins/genetics , Plants, Genetically Modified , RNA Interference
6.
Mol Plant ; 8(1): 111-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25578276

ABSTRACT

Phenolamides constitute a diverse class of secondary metabolites that are found ubiquitously in plants and have been implicated to play an important role in a wide range of biological processes, such as plant development and defense. However, spatiotemporal accumulation patterns of phenolamides in rice, one of the most important crops, are not available, and no gene responsible for phenolamide biosynthesis has been identified in this species. In this study, we report the comprehensive metabolic profiling and natural variation analysis of phenolamides in a collection of rice germplasm using a liquid chromatography-mass spectrometry-based targeted metabolomics method. Spatiotemporal controlled accumulations were observed for most phenolamides, together with their differential accumulations between the two major subspecies of rice. Further metabolic genome-wide association study (mGWAS) in rice leaf and in vivo metabolic analysis of the transgenic plants identified Os12g27220 and Os12g27254 as two spermidine hydroxycinnamoyl transferases that might underlie the natural variation of levels of spermidine conjugates in rice. Our work demonstrates that gene-to-metabolite analysis by mGWAS provides a useful tool for functional gene identification and omics-based crop genetic improvement.


Subject(s)
Amides/metabolism , Oryza/metabolism , Spermidine/metabolism , Gene Expression Regulation, Plant
7.
Mol Plant ; 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25267730

ABSTRACT

Phenolamides constitute a diverse class of secondary metabolites that are found ubiquitously in plants and have been implicated to play important role in a wide range of biological processes such as plant development and defense. However, spatio-temporal accumulation patterns of phenolamides in rice, one of the most important crops, are not available so far, and no gene responsible for the phenolamides biosynthesis has been identified in this species. In this report, we report here the comprehensive metabolic profiling and natural variation analysis of phenolamides in a collection of rice germplasm using an LC-MS-based targeted metabolomics method. Spatio-temporal controlled accumulations were observed for most phenolamides, together with their differential accumulations between the two major subspecies of rice. Further metabolic genome-wide association study (mGWAS) in rice leaf and the in vivo metabolic analysis of the transgenic plants identified Os12g27200 and Os12g27254 as two spermidine hydroxycinnamoyl transferases that might be underlying the natural variation of levels of spermidine conjugates in rice. Our work demonstrates 'gene-to-metabolite' analysis by mGWAS provides a useful tool for functional gene identification and omics-based crop genetic improvement.

8.
J Integr Plant Biol ; 56(9): 876-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24730595

ABSTRACT

Flavonoids constitute a major group of plant phenolic compounds. While extensively studied in Arabidopsis, profiling and naturally occurring variation of these compounds in rice (Oryza sativa), the monocot model plant, are less reported. Using a collection of rice germplasm, comprehensive profiling and natural variation of flavonoids were presented in this report. Application of a widely targeted metabolomics method facilitated the simultaneous identification and quantification of more than 90 flavonoids using liquid chromatography tandem mass spectrometry (LC-MS/MS). Comparing flavonoid contents in various tissues during different developmental stages revealed tissue-specific accumulation of most flavonoids. Further investigation indicated that flavone mono-C-glycosides, malonylated flavonoid O-hexosides, and some flavonoid O-glycosides accumulated at significantly higher levels in indica than in japonica, while the opposite was observed for aromatic acylated flavone C-hexosyl-O-hexosides. In contrast to the highly differential accumulation between the two subspecies, relatively small variations within subspecies were detected for most flavonoids. Besides, an association analysis between flavonoid accumulation and its biosynthetic gene sequence polymorphisms disclosed that natural variation of flavonoids was probably caused by sequence polymorphisms in the coding region of flavonoid biosynthetic genes. Our work paves the way for future dissection of biosynthesis and regulation of flavonoid pathway in rice.


Subject(s)
Flavonoids/metabolism , Oryza/metabolism , Chromatography, Liquid , Flavonoids/classification , Plant Leaves/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...