Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Fish Physiol Biochem ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789648

ABSTRACT

In order to evaluate the function of hypoxia-inducible factor-1 alpha (hif1α) and factor inhibiting hif1α (fih1) in response to thermal stress, we first conducted a functional analysis of A. sapidissima hif1α and fih1, and determined hif1α and fih1 expressions in different tissues in response to thermal stress based on identified housekeeping genes (HKGs). The results showed that hif1α and fih1 were mainly located in the nucleus and cytoplasm. The full length cDNA sequence of hif1α and fih1 was 4073 bp and 2759 bp, respectively. The cDNA sequence of hif1α includes 15 exons encoding 750 amino acid residues, and the full length cDNA sequence of fih1 contains 9 exons encoding 354 amino acid residues. During the acute thermal stress transferring from 16 ± 0.5 °C (control) to 20 ± 0.5 °C, 25 ± 0.5 °C, and 30 ± 0.5 °C for 15 min, it was found that the expression trends of hif1α and fih1 showed an inhibitory regulation in the heart, while they consistently expressed in brain, intestine, muscle, gill, kidney and liver. In conclusion, this is the first study to identify the tissue-specific HKGs in A. sapidissima and found that ef1α and ß-actin are the most suitable HKGs. Hif1α and Fih1 are mainly the nuclear and cytoplasmic proteins, respectively, having high levels in the heart and brain. Alosa sapidissima countered a temperature increase from 16 to 25 ℃ by regulating the expressions of hif1α and fih1, but their physiological regulatory functions were unable to cope with acute thermal stress when the temperature difference was 14 ℃ (from 16 to 30 ℃).

2.
Genomics ; 116(3): 110856, 2024 May.
Article in English | MEDLINE | ID: mdl-38734154

ABSTRACT

Temperature is one of the most important non-genetic sex differentiation factors for fish. The technique of high temperature-induced sex reversal is commonly used in Nile tilapia (Oreochromis niloticus) culture, although the molecular regulatory mechanisms involved in this process remain unclear. The brain is an essential organ for the regulation of neural signals involved in germ cell differentiation and gonad development. To investigate the regulatory roles of miRNAs-mRNAs in the conversion of female to male Nile tilapia gender under high-temperature stress, we compared RNA-Seq data from brain tissues between a control group (28 °C) and a high temperature-treated group (36 °C). The result showed that a total of 123,432,984 miRNA valid reads, 288,202,524 mRNA clean reads, 1128 miRNAs, and 32,918 mRNAs were obtained. Among them, there were 222 significant differentially expressed miRNAs (DE miRNAs) and 810 differentially expressed mRNAs (DE mRNAs) between the two groups. Eight DE miRNAs and eight DE mRNAs were randomly selected, and their expression patterns were validated by qRT-PCR. The miRNA-mRNA co-expression network demonstrated that 40 DE miRNAs targeted 136 protein-coding genes. Functional enrichment analysis demonstrated that these genes were involved in several gonadal differentiation pathways, including the oocyte meiosis signaling pathway, progesterone-mediated oocyte maturation signaling pathway, cell cycle signaling pathway and GnRH signaling pathway. Then, an interaction network was constructed for 8 miRNAs (mir-137-5p, let-7d, mir-1388-5p, mir-124-4-5p, mir-1306, mir-99, mir-130b and mir-21) and 10 mRNAs (smc1al, itpr2, mapk1, ints8, cpeb1b, bub1, fbxo5, mmp14b, cdk1 and hrasb) involved in the oocyte meiosis signaling pathway. These findings provide novel information about the mechanisms underlying miRNA-mediated sex reversal in female Nile tilapia.


Subject(s)
Brain , Cichlids , MicroRNAs , RNA, Messenger , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cichlids/genetics , Cichlids/metabolism , Cichlids/growth & development , Female , RNA, Messenger/metabolism , RNA, Messenger/genetics , Brain/metabolism , Brain/growth & development , Sex Differentiation , Male , Hot Temperature , Gene Regulatory Networks , Sex Determination Processes
3.
Int J Biol Macromol ; 271(Pt 1): 132666, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806081

ABSTRACT

Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.

4.
Antioxidants (Basel) ; 13(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38247513

ABSTRACT

Tilapia tolerate hypoxia; thus, they are an excellent model for the study of hypoxic adaptation. In this study, we determined the effect of acute hypoxia stress on the antioxidant capacity, metabolism, and gill/liver ultrastructure of male genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fish were kept under control (dissolved oxygen (DO): 6.5 mg/L) or hypoxic (DO: 1.0 mg/L) conditions for 72 h. After 2 h of hypoxia stress, antioxidant enzyme activities in the heart and gills decreased, while the malondialdehyde (MDA) content increased. In contrast, in the liver, antioxidant enzyme activities increased, and the MDA content decreased. From 4 to 24 h of hypoxia stress, the antioxidant enzyme activity increased in the heart but not in the liver and gills. Cytochrome oxidase activity was increased in the heart after 4 to 8 h of hypoxia stress, while that in the gills decreased during the later stages of hypoxia stress. Hypoxia stress resulted in increased Na+-K+-ATP activity in the heart, as well as hepatic vacuolization and gill lamella elongation. Under hypoxic conditions, male GIFT exhibit dynamic and complementary regulation of antioxidant systems and metabolism in the liver, gills, and heart, with coordinated responses to mitigate hypoxia-induced damage.

5.
BMC Genomics ; 25(1): 64, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229016

ABSTRACT

BACKGROUND: Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS: We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS: Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.


Subject(s)
Bass , Polymorphism, Single Nucleotide , Animals , Bass/genetics , Gene Frequency , Genotype , Body Weight/genetics
6.
Med Vet Entomol ; 38(1): 112-117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37850372

ABSTRACT

The parvorder Rhynchopthirina contains three currently recognised species of lice that parasitize elephants (both African savanna elephant Loxodonta africana and Asian elephant Elephas maximus), desert warthogs (Phacochoerus aethiopicus) and Red River hogs (Potamochoerus porcus), respectively. The Asian elephant lice and the African savanna elephant lice are currently treated as the same species, Haematomyzus elephantis (Piaget, 1869), based on morphology despite the fact that their hosts diverged 8.4 million years ago. In the current study, we sequenced 23 mitochondrial (mt) genes of African savanna elephant lice collected in South Africa and analysed the sequence divergence between African savanna elephant lice and previously sequenced Asian elephant lice. Sequence comparisons revealed >23% divergence for the 23 mt genes as a whole and ~17% divergence for cox1 gene between African savanna and Asian elephant lice, which were far higher than the divergence expected within a species. Furthermore, the mt gene sequence divergences between these lice are 3.76-4.6 times higher than that between their hosts, the African savanna and Asian elephants, which are expected for the co-divergence and co-evolution between lice and their elephant hosts. We conclude that (1) H. elephantis (Piaget, 1869) contains cryptic species and (2) African savanna and Asian elephant lice are different species genetically that may have co-diverged and co-evolved with their hosts.


Subject(s)
Elephants , Genome, Mitochondrial , Phthiraptera , Swine , Animals , Elephants/genetics , Phthiraptera/genetics , South Africa
7.
Animals (Basel) ; 13(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370555

ABSTRACT

Mitochondrial (mt) genome fragmentation has been discovered in all five parvorders of parasitic lice (Phthiraptera). To explore whether minichromosomal characters derived from mt genome fragmentation are informative for phylogenetic studies, we sequenced the mt genomes of 17 species of bird lice in Menoponidae and Laemobothriidae (Amblycera). Four species of Menoponidae (Actornithophilus sp. 1 ex [pied oystercatcher], Act. sp. 2 ex [masked lapwing], Austromenopon sp. 2 ex [sooty tern and crested tern], Myr. sp. 1 ex [satin bowerbird]) have fragmented mt genomes, whereas the other 13 species retain the single-chromosome mt genomes. The two Actornithophilus species have five and six mt minichromosomes, respectively. Aus. sp. 2 ex [sooty tern and crested tern] has two mt minichromosomes, in contrast to Aus. sp. 1 ex [sooty shearwater], which has a single mt chromosome. Myr. sp. 1 ex [satin bowerbird] has four mt minichromosomes. When mapped on the phylogeny of Menoponidae and Laemobothriidae, it is evident that mt genome fragmentation has occurred multiple times independently among Menoponidae and Laemobothriidae species. We found derived mt minichromosomal characters shared between Myrsidea species, between Actornithophilus species, and between and among different ischnoceran genera, respectively. We conclude that while mt genome fragmentation as a general feature does not unite all the parasitic lice that have this feature, each independent mt genome fragmentation event does produce minichromosomal characters that can be informative for phylogenetic studies of parasitic lice at different taxonomic levels.

8.
Viruses ; 15(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36680183

ABSTRACT

Birds may act as hosts for numerous pathogens, including members of the family Chlamydiaceae, beak and feather disease virus (BFDV), avipoxviruses, Columbid alphaherpesvirus 1 (CoAHV1) and Psittacid alphaherpesvirus 1 (PsAHV1), all of which are a significant biosecurity concern in Australia. While Chlamydiaceae and BFDV have previously been detected in Australian avian taxa, the prevalence and host range of avipoxviruses, CoAHV1 and PsAHV1 in Australian birds remain undetermined. To better understand the occurrence of these pathogens, we screened 486 wild birds (kingfisher, parrot, pigeon and raptor species) presented to two wildlife hospitals between May 2019 and December 2021. Utilising various qPCR assays, we detected PsAHV1 for the first time in wild Australian birds (37/486; 7.61%), in addition to BFDV (163/468; 33.54%), Chlamydiaceae (98/468; 20.16%), avipoxviruses (46/486; 9.47%) and CoAHV1 (43/486; 8.85%). Phylogenetic analysis revealed that BFDV sequences detected from birds in this study cluster within two predominant superclades, infecting both psittacine and non-psittacine species. However, BFDV disease manifestation was only observed in psittacine species. All Avipoxvirus sequences clustered together and were identical to other global reference strains. Similarly, PsAHV1 sequences from this study were detected from a series of novel hosts (apart from psittacine species) and identical to sequences detected from Brazilian psittacine species, raising significant biosecurity concerns, particularly for endangered parrot recovery programs. Overall, these results highlight the high pathogen diversity in wild Australian birds, the ecology of these pathogens in potential natural reservoirs, and the spillover potential of these pathogens into novel host species in which these agents cause disease.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Parrots , Animals , Australia/epidemiology , Circoviridae Infections/veterinary , Phylogeny , Biosecurity , Animals, Wild , Bird Diseases/epidemiology
9.
Org Biomol Chem ; 21(2): 332-338, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36533549

ABSTRACT

Imaging cancer specific biomarkers with near-infrared (NIR) fluorescent probes can help inaccurate diagnosis. Hydrogen sulfide (H2S) has been reported to be involved in many physiological and pathological processes and is considered as one of the key gasotransmitters during the development of cancer. To achieve specific H2S detection in cancer cells, we reported a biotin-guided NIR fluorescent sensor P1 targeting a cancer cell surface biomarker, based on the H2S-specific thiolysis of the NBD-amine-hemicyanine conjugate. The probe showed a fast turn-on signal at 754 nm upon H2S activation and good selectivity towards H2S over millimolar levels of other biothiols. We successfully employed P1 to image endogenous H2S and demonstrated its tumor-targeting ability in live cells. P1 could differentiate multiple cancer cells with various levels of H2S from normal cells, indicating its potential for cancer imaging.


Subject(s)
Hydrogen Sulfide , Neoplasms , Humans , Fluorescent Dyes , Biotin , HeLa Cells , Optical Imaging , Neoplasms/diagnostic imaging
10.
BMC Genomics ; 23(1): 283, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395774

ABSTRACT

BACKGROUND: The mitochondrial (mt) genomes of 15 species of sucking lice from seven families have been studied to date. These louse species have highly dynamic, fragmented mt genomes that differ in the number of minichromosomes, the gene content, and gene order in a minichromosome between families and even between species of the same genus. RESULTS: In the present study, we analyzed the publicly available data to understand mt genome fragmentation in seal lice (family Echinophthiriidae) and gorilla louse, Pthirus gorillae (family Pthiridae), in particular the role of minichromosome split and minichromosome merger in the evolution of fragmented mt genomes. We show that 1) at least three ancestral mt minichromosomes of sucking lice have split in the lineage leading to seal lice, 2) one minichromosome ancestral to primate lice has split in the lineage to the gorilla louse, and 3) two ancestral minichromosomes of seal lice have merged in the lineage to the northern fur seal louse. Minichromosome split occurred 15-16 times in total in the lineages leading to species in six families of sucking lice investigated. In contrast, minichromosome merger occurred only four times in the lineages leading to species in three families of sucking lice. Further, three ancestral mt minichromosomes of sucking lice have split multiple times independently in different lineages of sucking lice. Our analyses of mt karyotypes and gene sequences also indicate the possibility of a host switch of crabeater seal louse to Weddell seals. CONCLUSIONS: We conclude that: 1) minichromosome split contributes more than minichromosome merger in mt genome fragmentation of sucking lice, and 2) mt karyotype comparison helps understand the phylogenetic relationships between sucking louse species.


Subject(s)
Anoplura , Genome, Mitochondrial , Animals , Anoplura/genetics , Gene Order , Gorilla gorilla/genetics , Phylogeny
11.
J Am Chem Soc ; 144(9): 3957-3967, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35192764

ABSTRACT

The importance of selenium (Se) in biology and health has become increasingly clear. Hydrogen selenide (H2Se), the biologically available and active form of Se, is suggested to be an emerging nitric oxide (NO)-like signaling molecule. Nevertheless, the research on H2Se chemical biology has technique difficulties due to the lack of well-characterized and controllable H2Se donors under physiological conditions, as well as a robust assay for direct H2Se quantification. Motivated by these needs, here, we demonstrate that selenocyclopropenones and selenoamides are tunable donor motifs that release H2Se upon reaction with cysteine (Cys) at pH 7.4 and that structural modifications enable the rate of Cys-mediated H2Se release to be tuned. We monitored the reaction pathways for the H2Se release and confirmed H2Se generation qualitatively using different methods. We further developed a quantitative assay for direct H2Se trapping and quantitation in an aqueous solution, which should also be operative for investigating future H2Se donor motifs. In addition, we demonstrate that arylselenoamide has the capability of Cys-mediated H2Se release in cellular environments. Importantly, mechanistic investigations and density functional theory (DFT) calculations illustrate the plausible pathways of Cys-activated H2Se release from arylselenoamides in detail, which may help understand the mechanistic issues of the H2S release from pharmacologically important arylthioamides. We anticipate that the well-defined chemistries of Cys-activated H2Se donor motifs will be useful for studying Se biology and for development of new H2Se donors and bioconjugate techniques.


Subject(s)
Hydrogen Sulfide , Selenium , Cysteine , Hydrogen Sulfide/chemistry , Water
12.
Transbound Emerg Dis ; 69(5): e3154-e3170, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35041298

ABSTRACT

Birds can act as successful long-distance vectors and reservoirs for numerous zoonotic bacterial, parasitic and viral pathogens, which can be a concern given the interconnectedness of animal, human and environmental health. Examples of such avian pathogens are members of the genus Chlamydia. Presently, there is a lack of research investigating chlamydial infections in Australian wild and captive birds and the subsequent risks to humans and other animals. In our current study, we investigated the prevalence and genetic diversity of chlamydial organisms infecting wild birds from Queensland and the rate of co-infections with beak and feather disease virus (BFDV). We screened 1114 samples collected from 564 different birds from 16 orders admitted to the Australia Zoo Wildlife Hospital from May 2019 to February 2021 for Chlamydia and BFDV. Utilizing species-specific quantitative polymerase chain reaction (qPCR) assays, we revealed an overall Chlamydiaceae prevalence of 29.26% (165/564; 95% confidence interval (CI) 25.65-33.14), including 3.19% (18/564; 95% CI 2.03-4.99%) prevalence of the zoonotic Chlamydia psittaci. Chlamydiaceae co-infection with BFDV was detected in 9.75% (55/564; 95% CI 7.57-12.48%) of the birds. Molecular characterization of the chlamydial 16S rRNA and ompA genes identified C. psittaci, in addition to novel and other genetically diverse Chlamydia species: avian Chlamydia abortus, Ca. Chlamydia ibidis and Chlamydia pneumoniae, all detected for the first time in Australia within a novel avian host range (crows, figbirds, herons, kookaburras, lapwings and shearwaters). This study shows that C. psittaci and other emerging Chlamydia species are prevalent in a wider range of avian hosts than previously anticipated, potentially increasing the risk of spill-over to Australian wildlife, livestock and humans. Going forward, we need to further characterize C. psittaci and other emerging Chlamydia species to determine their exact genetic identity, potential reservoirs, and factors influencing infection spill-over.


Subject(s)
Chlamydia Infections , Chlamydophila psittaci , Circovirus , Animals , Animals, Wild , Australia/epidemiology , Birds , Chlamydia Infections/epidemiology , Chlamydia Infections/microbiology , Chlamydia Infections/veterinary , Chlamydophila psittaci/genetics , Circovirus/genetics , Humans , RNA, Ribosomal, 16S/genetics
13.
BMC Genomics ; 22(1): 598, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362306

ABSTRACT

BACKGROUND: The typical single-chromosome mitochondrial (mt) genome of animals has fragmented into multiple minichromosomes in the lineage Mitodivisia, which contains most of the parasitic lice of eutherian mammals. These parasitic lice differ from each other even among congeneric species in mt karyotype, i.e. the number of minichromosomes, and the gene content and gene order in each minichromosome, which is in stark contrast to the extremely conserved single-chromosome mt genomes across most animal lineages. How fragmented mt genomes evolved is still poorly understood. We use Polyplax sucking lice as a model to investigate how tRNA gene translocation shapes the dynamic mt karyotypes. RESULTS: We sequenced the full mt genome of the Asian grey shrew louse, Polyplax reclinata. We then inferred the ancestral mt karyotype for Polyplax lice and compared it with the mt karyotypes of the three Polyplax species sequenced to date. We found that tRNA genes were entirely responsible for mt karyotype variation among these three species of Polyplax lice. Furthermore, tRNA gene translocation observed in Polyplax lice was only between different types of minichromosomes and towards the boundaries with the control region. A similar pattern of tRNA gene translocation can also been seen in other sucking lice with fragmented mt genomes. CONCLUSIONS: We conclude that inter-minichromosomal tRNA gene translocation orientated towards the boundaries with the control region is a major contributing factor to the highly dynamic mitochondrial genome organization in the parasitic lice of mammals.


Subject(s)
Anoplura , Genome, Mitochondrial , Animals , Anoplura/genetics , Genome, Mitochondrial/genetics , Karyotype , Mammals , Phylogeny , RNA, Transfer/genetics
15.
Genomics ; 112(6): 4924-4933, 2020 11.
Article in English | MEDLINE | ID: mdl-32898640

ABSTRACT

We report for the first time the fragmented mitochondrial (mt) genomes of two Pedicinus species: Pedicinus obtusus and Pedicinus badii, and compared them with the lice of humans and chimpanzees. Despite being congeneric, the two monkey lice are distinct from each other in mt karyotype. The variation in mt karyotype between the two Pedicinus lice is the most pronounced among the congeneric species of sucking lice observed to date and is attributable to the opposite directions between them in mt karyotype evolution. Two of the inferred ancestral mt minichromosomes of the higher primate lice merged as one in the macaque louse whereas one of the ancestral minichromosomes split into two in the colobus louse after these two species diverged from their most recent common ancestor. Our results showed that mt genome fragmentation was a two-way process in the higher primate lice, and minichromosome merger was more common than previously thought.


Subject(s)
Anoplura/genetics , Evolution, Molecular , Genome, Mitochondrial , Animals , Anoplura/classification , Chromosomes, Insect , Colobus , Female , Karyotype , Macaca mulatta , Male , Phylogeny , RNA, Transfer, Leu/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...