Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1240: 340749, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36641147

ABSTRACT

In this work, we demonstrated a sensor array with multiple fluorescence channels using dendritic mesoporous silica nanoparticles embedded with three quantum dots for the determination of four heavy metal ions (Hg2+, Cu2+, Cr3+, and Ag+). Carboxyl-modified CdTe QDs with three different fluorescence emission wavelengths were loaded onto a dendritic mesoporous supporter by an amidation reaction. The fluorescence sensor array exhibited excellent analytical performance for discrimination and semi-quantification of heavy metal ions from a single test, which simplified detection procedures. The four heavy metal ions exhibited different degrees of quenching of the fluorescence emission intensities of the three quantum dots and resulted in a variant data matrix for linear discriminant analysis. Under optimized conditions, the fluorescence sensor array discriminated the four heavy metal ions in a concentration range of 0.05-5 µmol/L, and semi-quantified Hg2+, Cu2+, Cr3+, and Ag+ with a limit of detection of 2.51 nmol/L, 5.15 nmol/L, 3.81 nmol/L, and 5.74 nmol/L, respectively. The fluorescence sensor array integrated the sensing units into a single nanoparticle instead of the complex multiple detection steps used in traditional sensor arrays, providing an alternative strategy for constructing a single-well sensing platform. Furthermore, the fluorescence sensor array showed great practical potential for distinguishing heavy metal ions in raw water and crayfish samples.


Subject(s)
Cadmium Compounds , Mercury , Metals, Heavy , Nanoparticles , Quantum Dots , Fluorescence , Tellurium , Silicon Dioxide , Metals, Heavy/analysis , Mercury/analysis , Ions
2.
RSC Adv ; 12(32): 20785-20791, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35919143

ABSTRACT

Norfloxacin (NOX), a kind of quinolone antibiotic, is widely used in disease treatment and the control of human and livestock products. Due to overuse, norfloxacin has become a common organic pollutant in water. We combine the high specific surface area and high stability of metal-organic frameworks with the high selectivity of molecularly imprinted polymers. By grafting a carbon-carbon double bond on the surface of UiO-66-NH2, a molecularly imprinted layer is formed on the surface of UiO-66-NH2 upon free radical polymerization. The saturated adsorption capacity of UiO-66@MIP reaches 58.01 mg g-1. UiO-66@MIP exhibits high adsorption performance in real water samples and its recoveries range from 96.7% to 98.3%, which demonstrates a higher adsorption capacity and recovery than other molecularly imprinted materials and has potential applications in the removal of norfloxacin in real life.

3.
BMC Pharmacol Toxicol ; 22(1): 38, 2021 06 26.
Article in English | MEDLINE | ID: mdl-34172094

ABSTRACT

BACKGROUND: Subtilisin QK is a serine protease in the subtilisin family, and is fermented by Bacillus subtilis QK02. The fibrinolytic activity of subtilisin QK was measured by detecting low molecular weight degradation products using a spectrophotometric method developed by Japan Bio Science Laboratory Co., Ltd. Subtilisin QK powder can maintain its fibrinolytic activity for more than 24 months when it is stored at room temperature and protected from light. Our previous results showed that subtlisin QK directly degraded cross-linked fibrins in the fibrin plate assay and effectively inhibited thrombosis in the mouse thrombus model. The aim of this study was to determine the acute toxicity, potential subchronic toxicity, and safety pharmacology of subtilisin QK in Sprague-Dawley (SD) rats. METHODS: In the acute toxicity study, a single oral dose of 100,000 FU/kg was administered to 10 female and 10 male SD rats. In the 28-day subchronic toxicity, 60 female and 60 male SD rats were randomly assigned to four experimental groups (daily oral dose of 0, 2500, 7500 and 25,000 FU/kg). In the safety pharmacology study, 20 female and 20 male SD rats were randomly assigned to four experimental groups (single oral dose of 0, 500, 1500 and 5000 FU/kg). RESULTS: No death occurred and no adverse effects were observed in the acute toxicity study at a dose of 100,000 FU/kg. In the 28-day subchronic toxicity study, several hematological and blood biochemical parameters showed increases or decreases; however, due to the lack of a dose-response relationship, these differences were considered unrelated to treatment. In the safety pharmacology study, no adverse effects were observed on the central nervous of SD rats post-administration up to a dose of 5000 FU/kg subtilisin QK. CONCLUSION: The results showed that oral consumption of subtilisin QK is of low toxicological concern. No adverse effects were observed at doses of 2500, 7500, and 25,000 FU/kg in the 28-day subchronic toxicity, and the no-observed-adverse-effect level (NOAEL) of subtilisin QK was 25,000 FU/kg.


Subject(s)
Fibrinolytic Agents/toxicity , Subtilisins/toxicity , Administration, Oral , Animals , Female , Fibrinolytic Agents/pharmacology , Male , Rats, Sprague-Dawley , Subtilisins/pharmacology , Toxicity Tests, Acute , Toxicity Tests, Subchronic
4.
Biol Pharm Bull ; 44(2): 211-218, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33281147

ABSTRACT

Subtilisin NAT, a Bacillus subtilisin, is widely applied as a functional food and considered to be one of the most exploitable potential oral thrombolytic agents. Subtilisin QK, another Bacillus subtilisin, is a serine protease fermented by Bacillus subtilis 02 and has a better thrombolytic effect. Therefore, subtilisin QK is typically used for evaluating the safety of Bacillus subtilisins. Here, we conduct several good laboratory practice (GLP)-compliant studies in non-rodent animal, i.e., in Beagle dogs, including acute toxicity, subchronic toxicity, and safety pharmacology studies. No adverse effects were evident in the acute and 28-d subchronic toxicity studies at doses up to 40000 FU/kg and 16000 FU/kg/d, respectively. In evaluating the pharmacological safety of up to 2000FU/kg subtilisin QK, we found no significant differences between the electrocardiograms, blood pressures, and respiration of beagle dogs. These findings suggest the safety of Bacillus subtilisin, providing reliable pharmacological and toxicological data for its development and popularization as a functional food and drug.


Subject(s)
Fibrinolytic Agents/toxicity , Subtilisins/toxicity , Animals , Dogs , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Evaluation, Preclinical , Female , Fibrinolytic Agents/administration & dosage , Male , Subtilisins/administration & dosage , Toxicity Tests, Acute , Toxicity Tests, Subchronic
5.
J Chromatogr Sci ; 54(2): 200-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26341490

ABSTRACT

An HPLC method for quantifying total DNA methylation in Taxus chinensis cells is described. Optimal conditions for the method were established as follows: DNA was hydrolyzed with DNA degradase at 37°C for 3 h. The mobile phase was a mixture of Solvent A [50 mM potassium dihydrogen phosphate/triethylamine (100:0.2, v/v)] and Solvent B (methanol); the gradient was 10% (v/v) solvent B. The calibration curves for deoxycytidine monophosphate (dCMP) and methylated dCMP were linear within 1.0-160.0 µg mL(-1), with correlation coefficients of 0.9996 and 0.9998. The limits of detection for dCMP and 5-mdCMP were 0.482 and 0.301 ng mL(-1), respectively, and the limits of quantification were 1.6 and 1.0 ng mL(-1), respectively. The method has been validated according to the current International Conference Harmonization guidelines. The method was able to quantify the content of dCMP and methylated dCMP specifically, accurately and precisely. The global DNA methylation level in different Taxus cells was measured using as little as 3 µg of DNA according to the optimized procedure. In addition, degradation of 5-methylcytosine was prevented.


Subject(s)
Chromatography, High Pressure Liquid/methods , Taxus/chemistry , Taxus/genetics , DNA Methylation , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Plant/metabolism , Genomics , Taxus/metabolism
6.
Physiol Plant ; 156(1): 13-28, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26333689

ABSTRACT

Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented.


Subject(s)
Catechol Oxidase/metabolism , Glycyrrhiza/physiology , Phenols/metabolism , Plant Cells/physiology , Taxus/physiology , Bioreactors , Catechol Oxidase/genetics , Catechol Oxidase/isolation & purification , Cell Culture Techniques , Cell Membrane Permeability , Flavonoids/isolation & purification , Flavonoids/metabolism , Glycyrrhiza/chemistry , Glycyrrhiza/enzymology , Maillard Reaction , Oxygen/metabolism , Phenols/isolation & purification , Plant Cells/chemistry , Plant Cells/enzymology , Plant Proteins/genetics , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Quercetin/isolation & purification , Quercetin/metabolism , Taxus/chemistry , Taxus/enzymology , Tissue Culture Techniques
7.
Plant Cell Rep ; 35(3): 541-59, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26620815

ABSTRACT

KEY MESSAGE: Our results provide an evidence that the changes in taxane production caused by dissolved oxygen shifts could be associated with the global variations in the cell central carbon metabolism. Taxol is an important taxane synthesized by the Taxus plant. A two-stage culture of Taxus in vitro has been considered as an attractive alternative approach to produce Taxol and its precursors. To investigate the consequences of dissolved oxygen (DO) shifts for cell primary and secondary metabolism, we conducted metabolomic and transcriptomic profiling analyses under low dissolved oxygen (LDO), medium dissolved oxygen (MDO), and high dissolved oxygen (HDO) conditions in a suspension culture of Taxus chinensis cells. Under LDO, the results indicate a significant increase in the production of Taxol and its main precursors by 3.4- to 1.4-fold compared with those under MDO and HDO on 9th day. Multiple acyl taxanes (MAT) are abundant taxanes in the cells, and exhibited only a slight increase under the same conditions. Metabolomic analysis based on 209 primary metabolites indicated that several pathways in central carbon metabolism were involved, including the enhancement of the glycolysis pathway of glucose-6-phosphate to fructose-6-phosphate and pyruvate and the mevalonate pathway of terpene biosynthesis, and decline in the tricarboxylic acid pathway under LDO. These results indicate the mechanism by which related taxanes accumulate through enhancing the supplies of substrates and expression levels of hydroxylases. Excess acetyl-CoA supply induced by high oxygen stress was found to be correlated with high productivity of MAT. Our results provide an evidence that the changes in taxane production caused by DO shifts could be associated with the global variations in the cell central carbon metabolism.


Subject(s)
Bridged-Ring Compounds/metabolism , Cell Culture Techniques/methods , Oxygen/metabolism , Taxoids/metabolism , Taxus/cytology , Carbon/metabolism , Cells, Cultured , Gas Chromatography-Mass Spectrometry/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Metabolomics/methods , Oxygen/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Solubility , Taxus/genetics , Taxus/metabolism
8.
Front Plant Sci ; 6: 604, 2015.
Article in English | MEDLINE | ID: mdl-26300901

ABSTRACT

Plant-cell culture technology is a promising alternative for production of high-value secondary metabolites but is limited by the decreased metabolite production after long-term subculture. The goal of this study was to determine the effects of miRNAs on altered gene expression profiles during long-term subculture. Two Taxus cell lines, CA (subcultured for 10 years) and NA (subcultured for 6 months), were high-throughput sequenced at the mRNA and miRNA levels. A total of 265 known (78.87% of 336) and 221 novel (79.78% of 277) miRNAs were differentially expressed. Furthermore, 67.17% of the known differentially expressed (DE) miRNAs (178) and 60.63% of the novel DE-miRNAs (134) were upregulated in NA. A total of 275 inverse-related miRNA/mRNA modules were identified by target prediction analysis. Functional annotation of the targets revealed that the high-ranking miRNA targets were those implicated in primary metabolism and abiotic or biotic signal transduction. For example, various genes for starch metabolism and oxidative phosphorylation were inversely related to the miRNA levels, thereby indicating that miRNAs have important roles in these pathways. Interestingly, only a few genes for secondary metabolism were inversely related to miRNA, thereby indicating that factors other than miRNA are present in the regulatory system. Moreover, miR8154 and miR5298b were upregulated miRNAs that targeted a mass of DE genes. The overexpression of these miRNAs in CA increased the genes of taxol, phenylpropanoid, and flavonoid biosynthesis, thereby suggesting their function as crucial factors that regulate the entire metabolic network during long-term subculture. Our current studies indicated that a positive conversion of production properties from secondary metabolism to primary metabolism occurred in long-term subcultured cells. miRNAs are important regulators in the upregulation of primary metabolism.

9.
BMC Genomics ; 13: 295, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22748077

ABSTRACT

BACKGROUND: Methyl jasmonate (MeJA) has been successfully used as an effective elicitor to enhance production of taxol and other taxanes in cultured Taxus cells. However the mechanism of MeJA-mediated taxane biosynthesis remains unclear. Genomic information for species in the genus Taxus is currently unavailable. Therefore, information about the transcriptome of Taxus cells and specifically, description of changes in gene expression in response to MeJA, is needed for the better exploration of the biological mechanisms of MeJA-mediated taxane biosynthesis. RESULTS: In this research, the transcriptome profiles of T. chinensis cells at 16 hours (T16) after MeJA treatment and of mock-treated cells (T0) were analyzed by "RNA-seq" to investigate the transcriptional alterations of Taxus cell in response to MeJA elicitation. More than 58 million reads (200 bp in length) of cDNA from both samples were generated, and 46,581 unigenes were found. There were 13,469 genes found to be expressed differentially between the two timepoints, including all of the known jasmonate (JA) biosynthesis/JA signaling pathway genes and taxol-related genes. The qRT-PCR results showed that the expression profiles of 12 randomly selected DEGs and 10 taxol biosynthesis genes were found to be consistent with the RNA-Seq data. MeJA appeared to stimulate a large number of genes involved in several relevant functional categories, such as plant hormone biosynthesis and phenylpropanoid biosynthesis. Additionally, many genes encoding transcription factors were shown to respond to MeJA elicitation. CONCLUSIONS: The results of a transcriptome analysis suggest that exogenous application of MeJA could induce JA biosynthesis/JA signaling pathway/defence responses, activate a series of transcription factors, as well as increase expression of genes in the terpenoid biosynthesis pathway responsible for taxol synthesis. This comprehensive description of gene expression information could greatly facilitate our understanding of the molecular mechanisms of MeJA-mediated taxane biosynthesis in Taxus cells.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Gene Expression Profiling , Oxylipins/pharmacology , Taxus/genetics , Cells, Cultured , DNA, Complementary/genetics , DNA, Complementary/metabolism , Paclitaxel/biosynthesis , Plant Growth Regulators/metabolism , Propanols/metabolism , Signal Transduction/drug effects , Taxoids/metabolism , Transcription, Genetic/drug effects
10.
Z Naturforsch C J Biosci ; 67(11-12): 603-10, 2012.
Article in English | MEDLINE | ID: mdl-23413755

ABSTRACT

A protocol for the efficient genetic transformation of licorice (Glycyrrhiza inflata Batalin) cells in suspension culture using Agrobacterium tumefaciens-mediated T-DNA delivery is described. G. inflata cells in suspension culture were infected with A. tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1303, which contains the beta-glucuronidase (GUS) reporter gene and a hygromycin resistance gene (hpt II), respectively, under the transcriptional control of the CaMV35S promoter. Optimal transformation efficiency was achieved with an A. tumefaciens suspension having an OD600 of 0.4 and a period of 24 h of co-cultivation with 3-day-old cells in a medium supplemented with 200 microM acetosyringone. The transgenic cell lines have been maintained in suspension subculture for 5 months. PCR and Southern blot analyses confirmed the stable integration of transgenes into the G. inflata genome. The introduced genes had no discernable effect on cell growth or accumulation of total licorice flavonoids in the transgenic cell lines. This study provides the basis for the development of transgenic G. inflata cells.


Subject(s)
Agrobacterium tumefaciens/physiology , Glycyrrhiza/cytology , Base Sequence , Blotting, Southern , DNA Primers , DNA, Bacterial/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...