Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 149: 112879, 2022 May.
Article in English | MEDLINE | ID: mdl-35358801

ABSTRACT

OBJECTIVE: Ginsenoside Rf, a tetracyclic triterpenoid only present in Panax ginseng, has been proven to relieve lipid metabolism and inflammatory reactions, which can be a potential treatment for nonalcoholic fatty liver disease (NAFLD). Therefore, this study aimed to reveal the underlying mechanisms of ginsenoside Rf in the treatment of early-stage NAFLD (NAFL) by using a bioinformatics method and biological experiments. METHODS: Target genes associated with NAFL were screened from the Gene Expression Omnibus (GEO) database, a database repository of high-throughput gene expression data and hybridization arrays, chips, and microarrays. Subsequently, gene set enrichment analysis was performed by using Gene Ontology enrichment analysis tool. Then, the binding capacity between ginsenoside Rf and NAFL-related targets was evaluated by molecular docking. Finally, the FFA-induced HepG2 cell model treated with ginsenoside Rf was adopted to verify the effect of ginsenoside Rf and the related mechanisms. RESULTS: There were 41 common differentially expressed genes in the GEO dataset. Gene Ontology and Reactome pathway enrichment analysis of the differentially expressed genes showed that many pathways could be related to the pathogenesis of NAFL, including those participating in the cytokine-mediated signaling pathway, G protein-coupled receptor signaling pathway, and response to lipopolysaccharide. Finally, the qRT-PCR analysis results indicated that ginsenoside Rf therapy could ameliorate the transcription of ANXA2, BAZ1A, DNMT3L and MMP9. CONCLUSION: Our research discovered the relevant mechanisms and basic pharmacological effects of ginsenoside Rf in the treatment of NAFL. These results might facilitate the development of ginsenoside Rf as an alternative medication for NAFL.


Subject(s)
Ginsenosides , Non-alcoholic Fatty Liver Disease , Chromosomal Proteins, Non-Histone , Computational Biology/methods , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/metabolism
2.
Pharm Biol ; 55(1): 1223-1227, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28253826

ABSTRACT

CONTEXT: Codeine, also known as 3-methylmorphine, is an opiate used to treat pain, as a cough medicine and for diarrhoea. No study on the effects of codeine on the metabolic capacity of CYP enzyme is reported. OBJECTIVE: In order to investigate the effects of codeine on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B1, CYP2D1, CYP1A2, CYP3A2 and CYP2C11. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into codeine group (low, medium, high) and control group. The codeine group rats were given 4, 8, 16 mg/kg (low, medium, high) codeine by continuous intragastric administration for 14 days. Five probe drugs bupropion, metroprolol, phenacetin, midazolam and tolbutamide were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. RESULTS AND CONCLUSION: The pharmacokinetic parameters of bupropion and metroprolol experienced obvious change with AUC(0-t), Cmax increased and CL decreased for bupropion in medium dosage group and midazolam low dosage group. This result indicates that the 14 day-intragastric administration of codeine may inhibit the metabolism of bupropion (CYP2B1) and midazolam (CYP3A2) in rat. Additional, there are no statistical differences for albumin (ALB), alkaline phosphatase (ALP), creatinine (Cr) after 14 intragastric administration of codeine, while alanine aminotransferase (ALT), aspartate aminotransferase (AST), uric acid (UA) increased compared to control group. The biomedical test results show continuous 14 day-intragastric administration of codeine would cause liver damage.


Subject(s)
Codeine/metabolism , Codeine/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Animals , Bupropion/metabolism , Dose-Response Relationship, Drug , Drug Interactions/physiology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Isoenzymes/metabolism , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Tolbutamide/metabolism
3.
Tree Physiol ; 29(11): 1433-45, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19797042

ABSTRACT

The study of the fate of assimilated carbon in respiratory fluxes in the field is needed to resolve the residence and transfer times of carbon in the atmosphere-plant-soil system in forest ecosystems, but it requires high frequency measurements of the isotopic composition of evolved CO2. We developed a closed transparent chamber to label the whole crown of a tree and a labelling system capable of delivering a 3-h pulse of 99% 13CO2 in the field. The isotopic compositions of trunk and soil CO2 effluxes were recorded continuously on two labelled and one control trees by a tuneable diode laser absorption spectrometer during a 2-month chase period following the late summer labelling. The lag times for trunk CO2 effluxes are consistent with a phloem sap velocity of about 1 m h(-1). The isotopic composition (delta13C) of CO2 efflux from the trunk was maximal 2-3 days after labelling and declined thereafter following two exponential decays with a half-life of 2-8 days for the first and a half-life of 15-16 days for the second. The isotopic composition of the soil CO2 efflux was maximal 3-4 days after labelling and the decline was also well fitted with a sum of two exponential functions with a half-life of 3-5 days for the first exponential and a half-life of 16-18 days for the second. The amount of label recovered in CO2 efflux was around 10-15% of the assimilated 13CO2 for soil and 5-13% for trunks. As labelling occurred late in the growing season, substantial allocation to storage is expected.


Subject(s)
Carbon/metabolism , Fagus/metabolism , Carbon/analysis , Carbon/chemistry , Carbon Dioxide/metabolism , Carbon Isotopes , Climate , Half-Life , Lasers, Semiconductor , Photosynthesis , Soil , Spectrum Analysis/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...