Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Prolif ; 55(11): e13315, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35851701

ABSTRACT

OBJECTIVES: Ultraviolet light B (UVB) irradiation can induce skin injury and result in keratinocytes proliferation inhibition. However, the molecular understanding of the repair during UVB-induced cell proliferation inhibition remains poorly understood. The purpose of this study was to explore the role and potential mechanism of FGF10 in promoting keratinocytes cell cycle and proliferation after UVB injury. MATERIALS AND METHODS: Expression of FGF10 protein was analysed in skin treated with UVB radiation by immunohistochemistry. The proliferation potential was examined by Immunofluorescence, Western Blot and RT-PCR under UVB radiation, treated with FGF10 protein or overexpression of FGF10 using adeno-associated virus. CCK8 kit was used to further detect cell proliferation ability. RESULTS: We found that FGF10 is highly expressed in skin treated with UVB. Overexpression of FGF10 has a protective effect against UVB-induced skin damage by balancing epidermal thickness and enhancing epidermal keratinocytes proliferation. Importantly, FGF10 is found to alleviate UVB-induced downregulation of YAP activity, then promoting keratinocytes proliferation. Disruption of YAP function, either with the small molecule YAP inhibitor Verteporfin (VP) or YAP small-interfering RNA (siRNA), largely abolishes the protective activity of FGF10 on epidermal keratinocytes proliferation. Meanwhile, disruption of ERK kinase (MEK) activity with U0126 or ERK siRNA hinder the positive influence of FGF10 on UVB-induced skin injury. CONCLUSION: FGF10 promotes epidermal keratinocytes proliferation during UVB-induced skin injury in an ERK/YAP-dependent manner.


Subject(s)
Keratinocytes , Ultraviolet Rays , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/pharmacology , RNA, Small Interfering/metabolism , Keratinocytes/metabolism , Ultraviolet Rays/adverse effects , Signal Transduction
2.
J Invest Dermatol ; 142(6): 1714-1724.e13, 2022 06.
Article in English | MEDLINE | ID: mdl-34767814

ABSTRACT

Skin wound healing is a complex process involving intricate molecular mechanisms that remain unknown. Restoration of homeostasis after wounding requires the remodeling function of fibroblasts. In this study, we show that phosphorylation of α-cateninS641 was upregulated in fibroblasts during wounding, which accelerated their proliferation and migration to restore the skin barrier. At the wound edge, phosphorylated α-cateninS641 stabilized IκBα and thereby impaired the expression of NF-κB target genes to promote proliferation and migration of fibroblasts. Mechanically, phosphorylated α-cateninS641 blocked K48-linked polyubiquitination and proteasomal degradation of IκBα. Moreover, we also showed that EGF/EGFR/CK2α functioned as key upstream signaling of α-catenin by phosphorylating α-catenin at S641. Wound repair was significantly disrupted in the skin of mice in which α-catenin phosphorylation and CK2α kinase activity were perturbed in fibroblasts. These findings provide insights into the molecular control of fibroblast proliferation and migration in response to wounding and identify potential targets for the treatment of defective wound repair.


Subject(s)
NF-kappa B , Wound Healing , Animals , Fibroblasts/metabolism , Mice , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Phosphorylation , Skin/metabolism , Wound Healing/physiology , alpha Catenin/genetics , alpha Catenin/metabolism , beta Catenin/metabolism
3.
Cell Commun Signal ; 19(1): 35, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33736642

ABSTRACT

BACKGROUND: The mechanism underlying endothelial dysfunction leading to cardiovascular disease in type 2 diabetes mellitus (T2DM) remains unclear. Here, we show that inhibition of histone deacetylase 3 (HDAC3) reduced inflammation and oxidative stress by regulating nuclear factor-E2-related factor 2 (Nrf2), which mediates the expression of anti-inflammatory- and pro-survival-related genes in the vascular endothelium, thereby improving endothelial function. METHODS: Nrf2 knockout (Nrf2 KO) C57BL/6 background mice, diabetic db/db mice, and control db/m mice were used to investigate the relationship between HDAC3 and Nrf2 in the endothelium in vivo. Human umbilical vein endothelial cells (HUVECs) cultured under high glucose-palmitic acid (HG-PA) conditions were used to explore the role of Kelch-like ECH-associated protein 1 (Keap1) -Nrf2-NAPDH oxidase 4 (Nox4) redox signaling in the vascular endothelium in vitro. Activity assays, immunofluorescence, western blotting, qRT-PCR, and immunoprecipitation assays were used to examine the effect of HDAC3 inhibition on inflammation, reactive oxygen species (ROS) production, and endothelial impairment, as well as the activity of Nrf2-related molecules. RESULTS: HDAC3 activity, but not its expression, was increased in db/db mice. This resulted in de-endothelialization and increased oxidative stress and pro-inflammatory marker expression in cells treated with the HDAC3 inhibitor RGFP966, which activated Nrf2 signaling. HDAC3 silencing decreased ROS production, inflammation, and damage-associated tube formation in HG-PA-treated HUVECs. The underlying mechanism involved the Keap1-Nrf2-Nox4 signaling pathway. CONCLUSION: The results of this study suggest the potential of HDAC3 as a therapeutic target for the treatment of endothelial dysfunction in T2DM. Video Abstract.


Subject(s)
Diabetes Mellitus/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , Protective Agents/pharmacology , Protein Binding/drug effects
4.
Redox Biol ; 40: 101859, 2021 04.
Article in English | MEDLINE | ID: mdl-33445067

ABSTRACT

Hepatic ischemia-reperfusion injury (IRI) is a major complication of liver surgery and transplantation. IRI leads to hepatic parenchymal cell death, resulting in liver failure, and lacks effective therapeutic approaches. Fibroblast growth factor 10 (FGF10) is a paracrine factor which is well-characterized with respect to its pro-proliferative effects during embryonic liver development and liver regeneration, but its role in hepatic IRI remains unknown. In this study, we investigated the role of FGF10 in liver IRI and identified signaling pathways regulated by FGF10. In a mouse model of warm liver IRI, FGF10 was highly expressed during the reperfusion phase. In vitro experiments demonstrated that FGF10 was primarily secreted by hepatic stellate cells and acted on hepatocytes. The role of FGF10 in liver IRI was further examined using adeno-associated virus-mediated gene silencing and overexpression. Overexpression of FGF10 alleviated liver dysfunction, reduced necrosis and inflammation, and protected hepatocytes from apoptosis in the early acute injury phase of IRI. Furthermore, in the late phase of IRI, FGF10 overexpression also promoted hepatocyte proliferation. Meanwhile, gene silencing of FGF10 had the opposite effect. Further studies revealed that overexpression of FGF10 activated nuclear factor-erythroid 2-related factor 2 (NRF2) and decreased oxidative stress, mainly through activation of the phosphatidylinositol-3-kinase/AKT pathway, and the protective effects of FGF10 overexpression were largely abrogated in NRF2 knockout mice. These results demonstrate the protective effects of FGF10 in liver IRI, and reveal the important role of NRF2 in FGF10-mediated hepatic protection during IRI.


Subject(s)
Reperfusion Injury , Animals , Apoptosis , Fibroblast Growth Factor 10 , Hepatocytes , Liver , Mice , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...