Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.753
Filter
1.
Mol Neurobiol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850348

ABSTRACT

Dysbiosis of the gut microbiota is closely associated with neurodegenerative diseases, including Huntington's disease (HD). Gut microbiome-derived metabolites are key factors in host-microbiome interactions. This study aimed to investigate the crucial gut microbiome and metabolites in HD and their correlations. Fecal and serum samples from 11 to 26 patients with HD, respectively, and 16 and 23 healthy controls, respectively, were collected. The fecal samples were used for shotgun metagenomics while the serum samples for metabolomics analysis. Integrated analysis of the metagenomics and metabolomics data was also conducted. Firmicutes, Bacteroidota, Proteobacteria, Uroviricota, Actinobacteria, and Verrucomicrobia were the dominant phyla. At the genus level, the presence of Bacteroides, Faecalibacterium, Parabacteroides, Alistipes, Dialister, and Christensenella was higher in HD patients, while the abundance of Lachnospira, Roseburia, Clostridium, Ruminococcus, Blautia, Butyricicoccus, Agathobaculum, Phocaeicola, Coprococcus, and Fusicatenibacter decreased. A total of 244 differential metabolites were identified and found to be enriched in the glycerophospholipid, nucleotide, biotin, galactose, and alpha-linolenic acid metabolic pathways. The AUC value from the integrated analysis (1) was higher than that from the analysis of the gut microbiota (0.8632). No significant differences were found in the ACE, Simpson, Shannon, Sobs, and Chao indexes between HD patients and controls. Our study determined crucial functional gut microbiota and potential biomarkers associated with HD pathogenesis, providing new insights into the role of the gut microbiota-brain axis in HD occurrence and development.

2.
Neurology ; 102(12): e209478, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38830145

ABSTRACT

BACKGROUND AND OBJECTIVES: Noninvasive and accurate biomarkers of neurologic Wilson disease (NWD), a rare inherited disorder, could reduce diagnostic error or delay. Excessive subcortical metal deposition seen on susceptibility imaging has suggested a characteristic pattern in NWD. With submillimeter spatial resolution and increased contrast, 7T susceptibility-weighted imaging (SWI) may enable better visualization of metal deposition in NWD. In this study, we sought to identify a distinctive metal deposition pattern in NWD using 7T SWI and investigate its diagnostic value and underlying pathophysiologic mechanism. METHODS: Patients with WD, healthy participants with monoallelic ATP7B variant(s) on a single chromosome, and health controls (HCs) were recruited. NWD and non-NWD (nNWD) were defined according to the presence or absence of neurologic symptoms during investigation. Patients with other diseases with comparable clinical or imaging manifestations, including early-onset Parkinson disease (EOPD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and neurodegeneration with brain iron accumulation (NBIA), were additionally recruited and assessed for exploratory comparative analysis. All participants underwent 7T T1, T2, and high-resolution SWI scanning. Quantitative susceptibility mapping and principal component analysis were performed to illustrate metal distribution. RESULTS: We identified a linear signal intensity change consisting of a hyperintense strip at the lateral border of the globus pallidus in patients with NWD. We termed this feature "hyperintense globus pallidus rim sign." This feature was detected in 38 of 41 patients with NWD and was negative in all 31 nNWD patients, 15 patients with EOPD, 30 patients with MSA, 15 patients with PSP, and 12 patients with NBIA; 22 monoallelic ATP7B variant carriers; and 41 HC. Its sensitivity to differentiate between NWD and HC was 92.7%, and specificity was 100%. Severity of the hyperintense globus pallidus rim sign measured by a semiquantitative scale was positively correlated with neurologic severity (ρ = 0.682, 95% CI 0.467-0.821, p < 0.001). Patients with NWD showed increased susceptibility in the lenticular nucleus with high regional weights in the lateral globus pallidus and medial putamen. DISCUSSION: The hyperintense globus pallidus rim sign showed high sensitivity and excellent specificity for diagnosis and differential diagnosis of NWD. It is related to a special metal deposition pattern in the lenticular nucleus in NWD and can be considered as a novel neuroimaging biomarker of NWD. CLASSIFICATION OF EVIDENCE: The study provides Class II evidence that the hyperintense globus pallidus rim sign on 7T SWI MRI can accurately diagnose neurologic WD.


Subject(s)
Hepatolenticular Degeneration , Magnetic Resonance Imaging , Humans , Hepatolenticular Degeneration/diagnostic imaging , Hepatolenticular Degeneration/metabolism , Female , Male , Adult , Magnetic Resonance Imaging/methods , Middle Aged , Young Adult , Brain/diagnostic imaging , Brain/metabolism , Copper-Transporting ATPases/metabolism , Copper-Transporting ATPases/genetics , Copper/metabolism , Adolescent , Globus Pallidus/diagnostic imaging , Globus Pallidus/metabolism
3.
J Phys Chem B ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875519

ABSTRACT

The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 µM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 µM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.

4.
Mol Pharm ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822792

ABSTRACT

Transarterial radioembolization (TARE) is a highly effective localized radionuclide therapy that has been successfully used to treat hepatocellular carcinoma (HCC). Extensive research has been conducted on the use of radioactive microspheres (MSs) in TARE, and the development of ideal radioactive MSs is crucial for clinical trials and patient treatment. This study presents the development of a radioactive MS for TARE of HCC. These MSs, referred to as 177Lu-MS@PLGA, consist of poly(lactic-co-glycolic acid) (PLGA) copolymer and radioactive silica MSs, labeled with 177Lu and then coated with PLGA. It has an extremely high level of radiostability. Cellular experiments have shown that it can cause DNA double-strand breaks, leading to cell death. In vivo radiostability of 177Lu-MS@PLGA is demonstrated by microSPECT/CT imaging. In addition, the antitumor study has shown that TARE of 177Lu-MS@PLGA can effectively restrain tumor growth without harmful side effects. Thus, 177Lu-MS@PLGA exhibits significant potential as a radioactive MS for the treatment of HCC.

5.
Cerebellum ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869769

ABSTRACT

The CACNA1A gene encodes the alpha-1A subunit of P/Q type voltage-gated calcium channel Cav2.1, which is associated with a broad clinical spectrum and variable symptomatology. While few patients with progressive ataxia caused by CACNA1A missense variants have been reported, here we report three unrelated Chinese patients with progressive ataxia due to de novo missense variants in the CACNA1A gene, including a novel pathogenic variant (c.4999C > G) and a previously reported pathogenic variant (c.4037G > A). Our findings and a systematic literature review show the unique phenotype of progressive ataxia caused by missense variants and enlarge the genetic and clinical spectrum of CACNA1A. This suggests that in addition to routine screening for dynamic mutations, screening for CACNA1A variants is important for clinicians facing patients with progressive ataxia.

6.
Int J Legal Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858273

ABSTRACT

Monozygotic (MZ) twins cannot be distinguished using conventional forensic STR typing because they present identical STR genotypings. However, MZ twins do not always live in the same environment and often have different dietary and other lifestyle habits. Metabolic profiles are deyermined by individual characteristics and are also influenced by the environment in which they live. Therefore, they are potential markers capable of identifying MZ twins. Moreover, the production of proteins varies from organism to organism and is influenced by both the physiological state of the body and the external environment. Hence, we used metabolomics and proteomics to identify metabolites and proteins in peripheral blood to discriminate MZ twins. We identified 1749 known metabolites and 622 proteins in proteomic analysis. The metabolic profiles of four pairs of MZ twins revealed minor differences in intra-MZ twins and major differences in inter-MZ twins. Each pair of MZ twins exhibited distinct characteristics, and four metabolites-methyl picolinate, acesulfame, paraxanthine, and phenylbenzimidazole sulfonic acid-were observed in all four MZ twin pairs. These four differential exogenous metabolites conincidently show that the different external environments and life styles can be well distinguished by metabolites, considering that twins do not all have the same eating habits and living environments. Moreover, MZ twins showed different protein profiles in serum but not in whole blood. Thus, our results indicate that differential metabolites provide potential biomarkers for the personal identification of MZ twins in forensic medicine.

7.
Opt Express ; 32(11): 18550-18561, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859008

ABSTRACT

As a stochastic perturbation, the inter-core crosstalk (IC-XT) severely distorts the signal in multi-core fibers (MCF), especially for long-haul transmission. How to quickly measure and monitor the IC-XT online for an MCF-based space division multiplexing (SDM) system is of special importance. In this paper, we introduce the technology of auxiliary management and control channel (AMCC) to online monitor the IC-XT of MCF, in which the unique advantage of low-frequency auxiliary management and control signal is fully utilized with the limited influence on high-speed data transmission. Specifically, two orthogonal sequences are chosen as monitoring signals for the signal-channel core and the crosstalk-channel core, respectively, followed by digital signal processing (DSP) for the received signal to evaluate the real-time crosstalk accurately. The experimental verifications of XT online monitoring confirm the effectiveness of our proposed method with very small monitoring error (mostly < 0.5 dB) for both heterodyne XT and homodyne XT in the C and L bands, showing its great potential for future SDM systems.

8.
Front Immunol ; 15: 1388667, 2024.
Article in English | MEDLINE | ID: mdl-38799430

ABSTRACT

Cerebellar ataxia is an uncommon and atypical manifestation of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, often accompanied by seizures, psychiatric symptoms, and cognitive deficits. Previous cases of isolated brainstem-cerebellar symptoms in patients with anti-NMDAR encephalitis have not been documented. This report presents a case of anti-NMDAR encephalitis in which the patient exhibited cerebellar ataxia, nystagmus, diplopia, positive bilateral pathological signs, and hemiparesthesia with no other accompanying symptoms or signs. The presence of positive CSF anti-NMDAR antibodies further supports the diagnosis. Other autoantibodies were excluded through the use of cell-based assays. Immunotherapy was subsequently administered, leading to a gradual recovery of the patient.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Autoantibodies , Brain Stem , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Brain Stem/pathology , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Autoantibodies/blood , Female , Cerebellar Ataxia/etiology , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/immunology , Cerebellum/pathology , Cerebellum/diagnostic imaging , Receptors, N-Methyl-D-Aspartate/immunology , Adult , Immunotherapy , Male , Magnetic Resonance Imaging
10.
J Pers Med ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38793073

ABSTRACT

This study aimed to investigate whether baroreflex sensitivity (BRS) could serve as a reliable metric for assessing cardiovascular autonomic neuropathy (CAN) and concurrently act as a surrogate biomarker for evaluating the severity of arterial stiffness and CAN in individuals diagnosed with type 2 diabetes mellitus (T2DM). Participants underwent brachial-ankle pulse wave velocity (baPWV) as well as autonomic function evaluations encompassing the Sudoscan-based modified composite autonomic scoring scale (CASS), baroreflex sensitivity, and heart rate variability in time domains and frequency domains. Linear regression analysis was performed to evaluate the influence of independent variables on baPWV and modified CASS. Participants with higher baPWV values were older, with longer diabetes duration, lower body weight, body mass index, waist circumference, elevated systolic and diastolic blood pressure, and mean arterial blood pressure. They also exhibited a higher prevalence of retinopathy as the underlying disease and reduced estimated glomerular filtration rate. Multiple linear regression analysis revealed that age and BRS were significantly associated with baPWV while diabetes duration, UACR, and BRS were significantly associated with modified CASS. Our study confirms the significant association of BRS with baPWV and modified CASS in T2DM, highlighting its pivotal role in linking microvascular and macrovascular complications. This supports BRS as a surrogate marker for assessing both the severity of arterial stiffness and cardiovascular autonomic neuropathy in T2DM, enabling the early identification of complications.

11.
Article in English | MEDLINE | ID: mdl-38783778

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is a potent anti-cancer medication that is associated with numerous adverse effects, particularly concerning damage to the heart. METHODS: This study aimed to investigate the impact of sophocarpine (SOP) on DOX-induced heart injury through both in vivo and in vitro experiments. The experimental techniques employed encompassed echocardiography, hematoxylin/eosin (H&E) staining, Masson staining, immunohistochemical staining, western blotting, and so on. RESULTS: Echocardiography showed that SOP alleviated DOX-induced cardiac dysfunction, as evidenced by the improvements in both left ventricle ejection fraction and left ventricle fractional shortening. DOX caused upregulations of creatine kinase-MB and lactate dehydrogenase, while SOP decreased these indices. Staining methods such as H&E and Masson showed that SOP reversed the pathological changes induced by DOX. DOX elevated the expression levels of fibrosis-associated proteins such as Collagen I, Collagen III, α-SMA, Fibronectin, MMP-2, and MMP-9. However, SOP reversed these changes. Moreover, the study further revealed that SOP inhibited the TGF-ß1/Smad3 signaling pathway. CONCLUSIONS: These findings imply that SOP has the potential to mitigate DOX-induced heart injury by suppressing fibrosis. The underlying molecular mechanism may involve the inhibition of the TGF-ß1/Smad3 signaling pathway.

12.
Med Ultrason ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38805622

ABSTRACT

Point-of-care ultrasound (POCUS) plays an essential role in emergency medicine, providing a range of diagnostic and procedural modalities. It does not involve any ionizing radiation and can improve procedural accuracy and safety. The role of POCUS in the care of pediatric patients differs somewhat from that of adult patients, as there are a range of conditions specific to infants and children. The technical background of pediatric POCUS and its current applications for trauma and thoracic scanning are reviewed and illustrated in this first article of this series.

13.
Biomaterials ; 309: 122609, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754290

ABSTRACT

The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Drug Delivery Systems , Drug Resistance, Neoplasm , Lipid Metabolism , Mitochondria , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Lipid Metabolism/drug effects , Cell Line, Tumor , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , CD36 Antigens/metabolism , Metal-Organic Frameworks/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Nude , Reactive Oxygen Species/metabolism , Mice, Inbred BALB C , Lipase/metabolism
14.
J Ethnopharmacol ; 331: 118279, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705425

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY: The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS: Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS: Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS: This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.


Subject(s)
Aromatase , Estrogens , Granulosa Cells , Leonurus , Luteolin , Polycystic Ovary Syndrome , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Luteolin/pharmacology , Luteolin/isolation & purification , Animals , Humans , Aromatase/metabolism , Aromatase/genetics , Leonurus/chemistry , Estrogens/pharmacology , Estrogens/biosynthesis , Mice , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/isolation & purification
15.
Tree Physiol ; 44(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38691446

ABSTRACT

Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.


Subject(s)
Fabaceae , Nitrogen , Photosynthesis , Plant Leaves , Photosynthesis/physiology , Plant Leaves/physiology , Plant Leaves/metabolism , Fabaceae/physiology , Fabaceae/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Phosphorus/metabolism , Water/metabolism , Carbon/metabolism
16.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771878

ABSTRACT

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Subject(s)
Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
17.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718108

ABSTRACT

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Subject(s)
Endocytosis , Exosomes , Tetraspanin 30 , Exosomes/metabolism , Humans , Tetraspanin 30/metabolism , Biomarkers/metabolism , Syntenins/metabolism , Syntenins/genetics , Tetraspanin 28/metabolism , Cell Membrane/metabolism , Adaptor Protein Complex 2/metabolism , Tetraspanin 29/metabolism
18.
Brain Commun ; 6(3): fcae144, 2024.
Article in English | MEDLINE | ID: mdl-38756537

ABSTRACT

The neuropathological mechanisms underlying the association between sleep duration and mild cognitive impairment remain poorly understood. This population-based study included 2032 dementia-free people (age ≥ 60 years; 55.1% women) derived from participants in the Multimodal Interventions to Delay Dementia and Disability in Rural China; of these, data were available in 841 participants for Alzheimer's plasma biomarkers (e.g. amyloid-ß, total tau and neurofilament light chain), 1044 for serum microvascular biomarkers (e.g. soluble adhesion molecules) and 834 for brain MRI biomarkers (e.g. whiter matter, grey matter, hippocampus, lacunes, enlarged perivascular spaces and white matter hyperintensity WMH). We used electrocardiogram-based cardiopulmonary coupling analysis to measure sleep duration, a neuropsychological test battery to assess cognitive function and the Petersen's criteria to define mild cognitive impairment. Data were analysed with multivariable logistic and general linear models. In the total sample (n = 2032), 510 participants were defined with mild cognitive impairment, including 438 with amnestic mild cognitive impairment and 72 with non-amnestic mild cognitive impairment. Long sleep duration (>8 versus 6-8 h) was significantly associated with increased likelihoods of mild cognitive impairment and non-amnestic mild cognitive impairment and lower scores in global cognition, verbal fluency, attention and executive function (Bonferroni-corrected P < 0.05). In the subsamples, long sleep duration was associated with higher plasma amyloid-ß40 and total tau, a lower amyloid-ß42/amyloid-ß40 ratio and smaller grey matter volume (Bonferroni-corrected P < 0.05). Sleep duration was not significantly associated with serum-soluble adhesion molecules, white matter hyperintensity volume, global enlarged perivascular spaces and lacunes (P > 0.05). Alzheimer's and neurodegenerative pathologies may represent common pathways linking long sleep duration with mild cognitive impairment and low cognition in older adults.

19.
Article in English | MEDLINE | ID: mdl-38714787

ABSTRACT

Relapse is a major challenge in the treatment of drug addiction, and exercise has been shown to decrease relapse to drug seeking in animal models. However, the neural circuitry mechanisms by which exercise inhibits morphine relapse remain unclear. In this study, we report that 4-week treadmill training prevented morphine conditioned place preference (CPP) expression during abstinence by acting through the nucleus accumbens (NAc)-ventral pallidum (VP) pathway. We found that neuronal excitability was reduced in D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) following repeated exposure to morphine and forced abstinence. Enhancing the excitability of NAc D2-MSNs via treadmill training decreased the expression of morphine CPP. We also found that the effects of treadmill training were mediated by decreasing enkephalin levels and that restoring opioid modulation of GABA neurotransmission in the VP, which increased neurotransmitter release from NAc D2-MSNs to VP, decreased morphine CPP. Our findings suggest the inhibitory effect of exercise on morphine CPP is mediated by reversing morphine-induced neuroadaptations in the NAc-to-VP pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...