Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
2.
Zhongguo Zhong Yao Za Zhi ; 44(16): 3460-3467, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31602910

ABSTRACT

To investigate the pharmacodynamic effect and virulent effect of the main components of the toxic Chinese medicine Tripterygium wilfordii,such as triptolide,tripchlorolide,tripterine,demethylzeylasteral,wilfotrine and euonine,the admet SAR online assessment system was used to calculate the properties of the main components of T. wilfordii. The potential targets of the components were mined and collected through multiple databases,and the potential targets were enriched by the bioinformatics database DAVID.Cytoscape software was used to establish a " target-pathway" network and perform topology analysis on the network. The main chemical components of T. wilfordii were able to penetrate the blood-brain barrier and had intestinal permeability. A total of 65 targets were predicted,including pathways in cancer,hepatitis B,rheumatoid arthritis,and chagas disease( American trypanosomiasis),Toll-like receptor signaling pathway,apoptosis,colorectal cancer,NF-kappa B signaling pathway,etc. T. wilfordii mainly plays a role in the treatment of immune diseases and cancer by regulating inflammatory signaling pathways and cancer signaling pathways. Its action on apoptosis pathway and drug metabolism enzymes may be the mechanism of its toxicity.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Signal Transduction , Tripterygium/chemistry , Computational Biology , Humans , Inflammation
3.
PLoS One ; 14(5): e0216948, 2019.
Article in English | MEDLINE | ID: mdl-31141540

ABSTRACT

As an important part of the comprehensive treatment methods, the urate-lowering Chinese herbs could provide favorable clinical effects on hyperuricemia in its ability to invigorate spleen and remove dampness. Owing to the long-term duration, it brought up the potential adverse reactions (ADRs) and concerns about the drug-induced liver injury from these herbs. To address this problem, the bioinformatics approaches which combined the network pharmacology, computer simulation and molecular biology experiments were undertaken to elucidate the underlying drug-induced liver injury molecular mechanisms of urate-lowering Chinese herbs. Several electronic databases were searched to identify the potential liver injury compounds in published research. Then, the putative target profile of liver injury was predicted, and the interaction network was constructed based on the links between the compounds, corresponding targets and core pathways. Accordingly, the molecular docking simulation was performed to recognize the representative compounds with hepatotoxicity. Finally, the cell experiments were conducted to investigate the biochemical indicators and expression of the crucial protein that were closely associated with liver injury. In conclusion, the current research revealed that the compounds with potential liver injury including diosgenin, baicalin, saikosaponin D, tetrandrine, rutaecarpine and evodiamine from urate-lowering Chinese herbs, could lead to decline the survival rate of L-02 cell, increase the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) in cell-culture medium, enhance the expression of p-p38/p38, while the p38 inhibitor could achieve the trend of regulating and controlling liver injury. These research findings bring further support to the growing evidence that the mechanism of the liver injury induced by the compounds from urate-lowering Chinese herbs may be associated with the activation of p38α.


Subject(s)
Antimetabolites/adverse effects , Drugs, Chinese Herbal/chemistry , Gene Expression Regulation/drug effects , Gout Suppressants/adverse effects , Mitogen-Activated Protein Kinase 14/chemistry , Alanine Transaminase/genetics , Alanine Transaminase/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Antimetabolites/chemistry , Antimetabolites/isolation & purification , Antimetabolites/pharmacology , Aspartate Aminotransferases/genetics , Aspartate Aminotransferases/metabolism , Benzylisoquinolines/adverse effects , Benzylisoquinolines/chemistry , Benzylisoquinolines/isolation & purification , Benzylisoquinolines/pharmacology , Cell Line , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Computational Biology/methods , Flavonoids/adverse effects , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Gout Suppressants/chemistry , Gout Suppressants/isolation & purification , Gout Suppressants/pharmacology , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Hyperuricemia/drug therapy , Hyperuricemia/physiopathology , Indole Alkaloids/adverse effects , Indole Alkaloids/chemistry , Indole Alkaloids/isolation & purification , Indole Alkaloids/pharmacology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Liver/drug effects , Liver/pathology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Docking Simulation , Protein Binding , Quinazolines/adverse effects , Quinazolines/chemistry , Quinazolines/isolation & purification , Quinazolines/pharmacology , Saponins/adverse effects , Saponins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...