Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Science ; 384(6700): 1126-1134, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843338

ABSTRACT

The light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would receive in actual outdoor use. We report degradation mechanisms of p-i-n-structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) dominate the accelerated A-site cation migration, rather than direct degradation of HTMs. An aromatic phosphonic acid, [2-(9-ethyl-9H-carbazol-3-yl)ethyl]phosphonic acid (EtCz3EPA), enhanced bonding at the perovskite/HTM/TCO region with a phosphonic acid group bonded to TCOs and a nitrogen group interacting with lead in perovskites. A hybrid HTM of EtCz3EPA with strong hole-extraction polymers retained high efficiency and improved the UV stability of perovskite devices, and a champion perovskite minimodule-independently measured by the Perovskite PV Accelerator for Commercializing Technologies (PACT) center-retained operational efficiency of >16% after 29 weeks of outdoor testing.

2.
Langmuir ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842226

ABSTRACT

Maleic anhydride (MAH)-modified polymers are used as tie layers for binding dissimilar polymers in multilayer polymer films. The MAH chemistry which promotes adhesion is well characterized in the bulk; however, only recently has the interfacial chemistry been studied. Sum frequency generation vibrational spectroscopy (SFG) is an interfacial spectroscopy technique which provides detailed information on interfacial chemical reactions, species, and molecular orientations and has been essential for characterizing the MAH chemistry in both nylon and ethyl vinyl alcohol copolymer (EVOH) model systems and coextruded multilayer films. Here, we further characterize the interfacial chemistry between MAH-modified polyethylene tie layers and both EVOH and nylon by investigating the model systems over a range of MAH concentrations. We can detect the interfacial chemical reaction products between MAH and the barrier layer at MAH concentrations of ≥0.022 wt % for nylon and ≥0.077 wt % for EVOH. Additionally, from the concentration-dependent reaction reactant/product SFG peak positions and the product imide or ester/acid C═O group tilt angles extracted from the polarization-dependent SFG spectra, we quantitatively observe concentration-dependent changes to both the interfacial chemistry and interfacial structure. The interfacial chemistry and molecular orientation as a function of MAH concentration are well correlated with the adhesion strength, providing important quantitative information for the future design of MAH-modified tie layers for a variety of important applications.

3.
Food Chem ; 454: 139809, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38815324

ABSTRACT

Understanding the evolution of aroma profiles in stored sesame paste (SP) is essential for maintaining its quality. This study investigated the storage quality of SP and potential aroma markers indicative of sensory degradation. The descriptive sensory analysis demonstrated changes in aroma attributes during storage, transitioning from roasted sesame and nutty aromas to fermented and green aromas. Physicochemical analysis showed deepening color, intensified lipid oxidation, decreased levels of bioactive components, increased particle aggregation, and deteriorated flowability over 63 days at 40 °C. Gas chromatography-olfactometry-mass spectrometry identified 37 aroma-active compounds, with pyrazines, aldehydes, and phenols identified as the major constituents. Partial least squares regression analysis revealed 2-ethyl-3-methyl-pyrazine, 2-methoxy-4-vinylphenol, and benzaldehyde as key aroma-active compounds contributing significantly to the distinctive aromas "roasted nut and roasted sesame" found in SP. Conversely, hexanal and dimethyl disulfide emerged as potential markers of undesirable aromas in SP, including "rancid, green, and fermented". These findings provide insights into SP changes during storage, which is vital for preservation and quality enhancement strategies.

4.
Cell Host Microbe ; 32(5): 710-726.e10, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657607

ABSTRACT

Fusarium head blight (FHB) is a devastating wheat disease. Fhb1, the most widely applied genetic locus for FHB resistance, is conferred by TaHRC of an unknown mode of action. Here, we show that TaHRC alleles distinctly drive liquid-liquid phase separation (LLPS) within a proteinaceous complex, determining FHB susceptibility or resistance. TaHRC-S (susceptible) exhibits stronger LLPS ability than TaHRC-R (resistant), and this distinction is further intensified by fungal mycotoxin deoxynivalenol, leading to opposing FHB symptoms. TaHRC recruits a protein class with intrinsic LLPS potentials, referred to as an "HRC-containing hub." TaHRC-S drives condensation of hub components, while TaHRC-R comparatively suppresses hub condensate formation. The function of TaSR45a splicing factor, a hub member, depends on TaHRC-driven condensate state, which in turn differentially directs alternative splicing, switching between susceptibility and resistance to wheat FHB. These findings reveal a mechanism for FHB spread within a spike and shed light on the roles of complex condensates in controlling plant disease.


Subject(s)
Disease Resistance , Fusarium , Plant Diseases , Plant Proteins , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/metabolism , Fusarium/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Trichothecenes/metabolism , Alleles , Alternative Splicing
5.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38620069

ABSTRACT

Exciton-polariton systems composed of a light-matter quasi-particle with a light effective mass easily realize Bose-Einstein condensation. In this work, we constructed an annular trap in a halide perovskite semiconductor microcavity and observed the spontaneous formation of symmetrical petal-shaped exciton-polariton condensation in the annular trap at room temperature. In our study, we found that the number of petals of the petal-shaped exciton-polariton condensates, which is decided by the orbital angular momentum, is dependent on the light intensity distribution. Therefore, the selective excitation of perovskite microcavity exciton-polariton condensates under all-optical control can be realized by adjusting the light intensity distribution. This could pave the way to room-temperature topological devices, optical cryptographical devices, and new quantum gyroscopes in the exciton-polariton system.

6.
J Oleo Sci ; 73(5): 813-821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583980

ABSTRACT

Gas chromatography-olfactory-mass spectrometry (GC-O-MS) combined with Aroma Extract Dilution Analysis (AEDA) were employed to characterize the key odor-active compounds in sesame paste (SP) and dehulled sesame paste (DSP). The AEDA results revealed the presence of 32 and 22 odor-active compounds in SP and DSP, respectively. Furthermore, 13 aroma compounds with FD ≥ 2, OAV ≥ 1, and VIP ≥ 1 were identified as key differential aroma compounds between SP and DSP. Specifically, compounds such as 3-methylbutyraldehyde (OAV = 100.70-442.57; fruity), 2-methylbutyraldehyde (OAV = 106.89-170.31; almond), m-xylene (FD = 16; salty pastry), and 2,5-dimethylpyrazine (FD = 8-16; roasted, salty pastry) played an important role in this differentiation. Additionally, the dehulling process led to increased fermented, sweet, green, and nutty aroma notes in DSP compared to the more pronounced burnt and roasted sesame aroma notes in SP. Our findings offer a theoretical foundation for the regulation of sesame paste aroma profiles.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Sesamum , Sesamum/chemistry , Odorants/analysis , Food Handling/methods , Pyrazines/analysis , Xylenes/analysis , Aldehydes/analysis , Taste , Flavoring Agents/analysis , Volatile Organic Compounds/analysis
7.
Ultrasound Med Biol ; 50(7): 1020-1027, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594125

ABSTRACT

OBJECTIVE: This study aimed to investigate the impact of microbubble degradation and flow velocity on Sub-Harmonic Aided Pressure Estimation (SHAPE), and to explore the correlation between subharmonic amplitude and pressure as a single factor. METHODS: We develop an open-loop vascular phantom platform system and utilize a commercial ultrasound machine and microbubbles for subharmonic imaging. Subharmonic amplitude was measured continuously at constant pressure and flow velocity to assess the impact of microbubble degradation. Flow velocity was varied within a range of 4-14 cm/s at constant pressure to investigate its relationship to subharmonic amplitude. Furthermore, pressure was varied within a range of 10-110 mm Hg at constant flow velocity to assess its isolated effect on subharmonic amplitude. RESULTS: Under constant pressure and flow velocity, subharmonic amplitude exhibited a continuous decrease at an average rate of 0.221 dB/min, signifying ongoing microbubble degradation during the experimental procedures. Subharmonic amplitude demonstrated a positive correlation with flow velocity, with a variation ratio of 0.423 dB/(cm/s). Under controlled conditions of microbubble degradation and flow velocity, a strong negative linear correlation was observed between pressure and subharmonic amplitude across different Mechanical Index (MI) settings (all R2 > 0.90). The sensitivity of SHAPE was determined to be 0.025 dB/mmHg at an MI of 0.04. CONCLUSION: The assessment of SHAPE sensitivity is affected by microbubble degradation and flow velocity. Excluding the aforementioned influencing factors, a strong linear negative correlation between pressure and subharmonic amplitude was still evident, albeit with a sensitivity coefficient lower than previously reported values.


Subject(s)
Microbubbles , Phantoms, Imaging , Blood Flow Velocity/physiology , Pressure , Ultrasonography/methods , Contrast Media
8.
Plant Physiol Biochem ; 207: 108398, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38359555

ABSTRACT

Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.


Subject(s)
Melatonin , Reactive Oxygen Species/metabolism , Melatonin/pharmacology , Plants/metabolism , Stress, Physiological , Plant Development , Plant Growth Regulators/metabolism
9.
Front Psychol ; 15: 1292516, 2024.
Article in English | MEDLINE | ID: mdl-38348258

ABSTRACT

There has been much controversy over the effects of music tempo on movement flow. In this study, a single-factor repeated-measurement design was used to explore the effect of music tempo (fast, slow, and no music control) on movement flow by measuring both subjective experiences and objective electroencephalographic (EEG) characteristics during brisk walking. In the experiment, 20 college students walked briskly on a treadmill using EEG equipment. Each participant walked for 10 min on three different days. Their brain waves were recorded during brisk walking on a treadmill. After each walk, the participants completed a form of short flow state scale-2 (S FSS-2), which covered nine major aspects of flow. The results showed that music tempo had a significant effect on subjective experiences and objective physiological characteristics; that is, a higher subjective flow level for fast-tempo music in brisk walking and a significant enhancement of mean power values in the subconscious brain waves of the delta, theta, alpha, and beta bands for fast tempo music were observed. A fast tempo facilitated the movement flow. The findings of this study can be instructive for the use of music in exercises to improve sports training outcomes.

10.
J Phys Chem Lett ; 15(6): 1748-1754, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38324713

ABSTRACT

In this paper, we demonstrate that exciton/exciton annihilation in the 2D perovskite (PEA)2PbI4 (PEPI)─a major loss mechanism in solar cells and light-emitting diodes, can be controlled through coupling of excitons with cavity polaritons. We study the excited state dynamics using time-resolved transient absorption spectroscopy and show that the system can be tuned through a strong coupling regime by varying the cavity width through the PEPI layer thickness. Remarkably, strong coupling occurs even when the cavity quality factor remains poor, providing easy optical access. We demonstrate that the observed derivative-like transient absorption spectra can be modeled using a time-dependent Rabi splitting that occurs because of transient bleaching of the excitonic states. When PEPI is strongly coupled to the cavity, the exciton/exciton annihilation rate is suppressed by 1 order of magnitude. A model that relies on the partly photonic character of polaritons explains the results as a function of detuning.

11.
J Food Sci ; 89(3): 1361-1372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258954

ABSTRACT

This study aimed to investigate the influence of the moisture content of dehulled sesame seeds on the aroma formation and harmful substances in sesame paste (SP). The SP samples were made of dehulled sesame seeds with moisture contents of 5%, 10%, 15%, 20%, and 25% and denoted as T5, T10, T15, T20, and T25, respectively. The results revealed that adjusting the moisture content had a significant impact on aroma compounds, color intensity, and sensory properties. SP pre-adjusted to a moisture content of 10% exhibited the smallest L* value and the highest browning strength. Using gas chromatography-olfactometry-mass spectrometry analysis, the researchers identified 38 aroma-active compounds in the SP, with pyrazines being the most abundant, contributing to roasted sesame and nutty aromas. Additionally, the presence of pyrrole and furan derivatives led to enhanced caramel and almond aromas, positively influencing the overall sensory properties. T10 demonstrated the highest levels of roasted sesame and nutty odors. Furthermore, the regulation of moisture content also affected the formation of harmful compounds, such as heterocyclic amines and polycyclic aromatic hydrocarbons (PAHs). Notably, the sample made of the sesame seeds with 10% and 15% moisture content exhibited the lowest total PAHs content (18.21-28.91 ng/g) and PAH4 content (non-detectable-0.15 ng/g). The carcinogen benzo[a]pyrene was not detected in any of the samples, ensuring a safer product. The pre-adjustment of moisture content in SP appears to be a promising approach to improve both its flavor and safety qualities.


Subject(s)
Sesamum , Volatile Organic Compounds , Odorants/analysis , Sesamum/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Seeds/chemistry
12.
Food Chem X ; 21: 101100, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38236464

ABSTRACT

In this study, the influence of pre-regulation of the water content (5-25 %) on the harmful substances and aroma compounds of sesame paste (SP) was investigated. The results indicated that pre-regulation of the water content reduced the generation of harmful substances in SP. Notably, the total heterocyclic amine content in SP-15 was significantly lower than in other samples. SP-10 had the lowest total polycyclic aromatic hydrocarbon content, while SP-5 exhibited the lowest PAH4 content. Using solvent-assisted aroma evaporation and GC-O-MS, 50 aroma compounds were identified in SP. Pre-regulation of water content in SP led to an elevated concentration of heterocyclic compounds thereby imparting a diverse aromatic profile. It enhanced the perceived intensity of roasted sesame and salty pastry aromas while reducing the perceived intensity of fermentation and burnt aromas. The findings suggested the pre-regulation of the water content played a crucial role in aroma modulation and harmful substances control in SP.

13.
Org Lett ; 26(3): 631-635, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38214532

ABSTRACT

A gold-catalyzed, nucleophile-controlled cascade reaction of N-(2-azidophenyl-ynyl)methanesulfonamides with nitriles and water is described that provides structurally diverse 5H-pyrimido[5,4-b]indoles and 2-benzylidene-3-indolinones in good to excellent yields. Mechanistic studies indicate that the ß-sulfonamido-α-imino gold carbene is the key intermediate which is generated through the gold-catalyzed cyclization of N-(2-azidophenyl-ynyl)methanesulfonamides and undergoes formal [4 + 2] cascade annulation with nitriles and intramolecular SN2' type reaction with water, respectively.

14.
Insects ; 14(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38132585

ABSTRACT

Following infestation by phytophagous insects, changes in the composition and relative proportion of volatile components emitted by plants may be observed. Some phytophagous insects can accurately identify these compounds to locate suitable host plants. We investigated whether herbivore-induced plant volatiles (HIPVs) generated by herbivory on Pistacia chinensis Bunge (Sapindales: Aceraceae) might be semiochemicals for the host location of Batocera horsfieldi Hope (Coleoptera: Cerambycidae). We performed two-choice bioassays (indoor darkroom, inside cages) on plants damaged by adult feeding and intact control plants. Volatiles from these plants were then collected and identified, and the response of adult antennae to these compounds was tested via electroantennography (EAG). The behavioral responses of B. horsfieldi to these compounds were finally assessed using a Y-tube olfactometer. Host plant choice tests show that B. horsfieldi prefers feeding-damaged P. chinensis over healthy trees. In total, 15 compounds were collected from healthy and feeding-damaged P. chinensis, 10 of which were shared in both healthy and feeding-damaged P. chinensis, among which there were significant differences in the quantities of five terpenes, including α-pinene, ß-pinene, α-phellandrene, D-limonene, and ß-ocimene. In EAG assays, the antennae of B. horsfieldi adults responded strongly to (Z)-3-hexen-1-ol, ß-ocimene, 3-carene, γ-terpinene, D-limonene, myrcene, and α-phellandrene. The antennae of B. horsfieldi adults responded in a dose-response manner to these compounds. Y-tube behavioral experiments showed that four compounds attracted mated females ((Z)-3-hexen-1-ol, ß-ocimene, 3-carene, and α-phellandrene), two compounds ((Z)-3-hexen-1-ol and α-phellandrene) attracted males, and adults of both sexes avoided D-limonene. Feeding bioassays showed that (Z)-3-hexen-1-ol and ß-ocimene could promote the feeding of B. horsfieldi and that D-limonene inhibited this response. These results could provide a theoretical basis for developing attractants or repellents for B. horsfieldi.

15.
Chem Commun (Camb) ; 59(95): 14130-14133, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37953633

ABSTRACT

A unique configuration based on internally integrated electrodes is proposed for flexible hybrid zinc-ion capacitor (HZIC) devices. An in-depth charge storage process is studied, confirming the high electrochemical promise of HZICs for future practical applications.

16.
RSC Adv ; 13(37): 25912-25919, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37655354

ABSTRACT

A sensitive ratiometric fluorescent sensor for detecting cadmium ions (Cd2+) was constructed based on carbon quantum dots (CQDs)/CdTe quantum dots (CdTe QDs). Red fluorescence (from CdTe QDs) played the role of the signal response and blue fluorescence (from CQDs) served as a reference probe without a color change. The fluorescent sensor showed high selectivity and sensitivity to Cd2+ with a limit of detection (LOD) of 0.018 µM and a range from 0.1 µM to 23 µM. The proposed method was successfully applied to the determination of Cd2+ in real rice samples. In addition, a fluorescent sensor integrated with a smartphone platform was further designed for the visualized and quantitative detection of Cd2+. This work might extend the range of visualization analysis strategies and provide new insights into the rapid quantitative, portable and sensitive detection of Cd2+ in real-time and on-site applications.

17.
Adv Mater ; 35(49): e2306655, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37670609

ABSTRACT

A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.

18.
Front Endocrinol (Lausanne) ; 14: 1187781, 2023.
Article in English | MEDLINE | ID: mdl-37621645

ABSTRACT

Purpose: To determine the renal sinus fat (RSF) volume and fat fraction (FF) in normal Chinese subjects using MRI fat fraction mapping and to explore their associations with age, gender, body mass index (BMI) and ectopic fat deposition. Methods: A total of 126 subjects were included in the analysis. RSF volume and FF, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) area, and hepatic and pancreatic FFs were measured for each subject. The comparisons in gender were determined using two-tailed t-tests or the nonparametric Mann-Whitney U-test for normally or non-normally distributed data for continuous variables and the chi-square test for categorical variables. Comparisons of RFS volume and FF between right and left kidneys were determined using paired sample t-tests. Multivariable logistic models were performed to confirm whether RSF differences between men and women are independent of VAT or SAT area. When parameters were normally distributed, the Pearson correlation coefficient was used; otherwise, the Spearman correlation coefficient was applied. Results: The RSF volumes (cm3) of both kidneys in men (26.86 ± 8.81 for right and 31.62 ± 10.32 for left kidneys) were significantly bigger than those of women (21.47 ± 6.90 for right and 26.03 ± 8.55 for left kidneys) (P < 0.05). The RSF FFs (%) of both kidneys in men (28.33 ± 6.73 for right and 31.21 ± 6.29 for left kidneys) were significantly higher than those of the women (23.82 ± 7.74 for right and 27.92 ± 8.15 for left kidneys) (P < 0.05). The RSF differences between men and women are independent of SAT area and dependent of VAT area (except for right RSF volume). In addition, the RSF volumes and FFs in both kidneys in the overall subjects show significant correlations with age, BMI, VAT area, hepatic fat fraction and pancreatic fat fraction (P < 0.05). However, the patterns of these correlations varied by gender. The RSF volume and FF of left kidney were significantly larger than those of the right kidney (P < 0.05). Conclusion: The association between renal sinus fat and ectopic fat deposition explored in this study may help establish a consensus on the normal values of RSF volume and FF for the Chinese population. This will facilitate the identification of clinicopathological changes and aid in the investigation of whether RSF volume and FF can serve as early biomarkers for metabolic diseases and renal dysfunction in future studies.


Subject(s)
Asian People , Kidney , Female , Humans , Male , Body Mass Index , Consensus , Kidney/diagnostic imaging , Magnetic Resonance Imaging , Pancreatic Hormones , Subcutaneous Fat/physiology
20.
Mol Med Rep ; 28(2)2023 Aug.
Article in English | MEDLINE | ID: mdl-37387406

ABSTRACT

Adriamycin is a widely used and effective antitumor drug; however, its application is limited by various side effects, including irreversible cardiotoxicity. The central role of cardiac atrophy in Adriamycin­induced cardiotoxicity has been revealed; however, the underlying mechanism of this process remains unclear. Artemether is a well­known Chinese herbal medicine, and its pharmacological action is related to the regulation of mitochondrial function and redox status. The present study determined the effects of artemether on Adriamycin­induced cardiotoxicity and investigated the underlying mechanisms. After mouse model establishment and artemether intervention, experimental methods including pathological staining, immunohistochemistry, immunofluorescence, immunoblotting, ELISA and reverse transcription­quantitative PCR were used to evaluate the therapeutic effect. The results demonstrated that artemether prevented Adriamycin­induced cardiac atrophy and recovered the intercombination of connexin 43 and N­cadherin at the intercalated discs. Artemether also regulated the autophagy pathway and restored the unbalanced ratio of Bax and Bcl­2 in myocardial cells. In addition, the increased serum H2O2 levels after Adriamycin exposure were significantly decreased by artemether, and the mitochondrial alterations and redox imbalance in myocardial cells were also improved to varying degrees. In summary, the findings of the present study provide reliable evidence that artemether could ameliorate cardiac atrophy induced by Adriamycin. This therapeutic approach may be translated to the clinic for preventing drug­induced heart diseases.


Subject(s)
Cardiotoxicity , Doxorubicin , Animals , Mice , Doxorubicin/adverse effects , Hydrogen Peroxide , Myocytes, Cardiac , Artemether/pharmacology , Atrophy
SELECTION OF CITATIONS
SEARCH DETAIL
...