Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Eur Acad Dermatol Venereol ; 38 Suppl 3: 3-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38189670

ABSTRACT

BACKGROUND: Although glutathione (GSH) has long been considered a master antioxidant, poor stability and bioavailability limit its application in skin protection. To overcome the challenges, Unilever R&D formulated a Glutathione Amino acid Precursors blend (named GAP) to boost GSH de novo synthesis. OBJECTIVE: Determine whether GAP can boost GSH levels and provide skin protection against stressors. METHODS: Normal human epidermal keratinocytes were treated with GAP, with or without stressors, namely, menadione, blue light or pollutants. Ascorbic acid was used as a benchmark. The levels of GSH, glutathione disulfide (GSSG), adenosine triphosphate (ATP) and reactive oxygen species (ROS) were quantified. A placebo-controlled clinical study was conducted on 21 female subjects who received product applications and subsequent UV radiation. Tape strip samples were collected from the subjects for GSH and GSSG quantification using ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS). The UV-protective effect of GAP was investigated using ex vivo skin. Biomarkers related to DNA damage and the skin barrier were analysed using immunohistochemistry. RESULTS: Glutathione amino acid precursors significantly increased the GSH levels and GSH/GSSG ratio in normal human epidermal keratinocytes. Menadione treatment resulted in excessive ROS production and a decline in ATP levels, which were effectively abrogated by GAP. The protective effects of GAP against menadione-induced oxidative stress were superior to those of ascorbic acid. In addition, GAP effectively protected the cells against blue light-induced ROS production and pollutant-induced ATP depletion. Topical application of the GAP formulation significantly elevated the skin GSH/GSSG ratio in a clinical study. Ex vivo skin treated with the GAP formulation displayed a reduction in DNA damage and high levels of barrier proteins after UV exposure. CONCLUSIONS: Glutathione amino acid precursors effectively increases cellular GSH levels to protect the skin from oxidative and environmental stresses.


Subject(s)
Amino Acids , Vitamin K 3 , Female , Humans , Glutathione Disulfide , Reactive Oxygen Species , Chromatography, Liquid , Tandem Mass Spectrometry , Glutathione , Oxidative Stress , Adenosine Triphosphate , Ascorbic Acid/pharmacology
2.
RSC Adv ; 12(27): 17330-17336, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765423

ABSTRACT

Environmental pollution caused by aromatic compounds such as catechol (Cat) has become a major issue for human health. However, there is no simple, rapid, and low-cost method for on-site monitoring of Cat. Here, based on ECL quenching mechanism, we develop a simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor for on-site monitoring of Cat. The mechanism of ECL quenching is due to the interaction between Cat and Ru(bpy)3 2+* and the interactions between the oxidation products of Cat and DBAE. MSNs films with ordered perpendicular mesopore channels exhibit an amplification effect of ECL intensity due to the negatively charged pore channel. There is a good linear relationship between ECL intensity and Cat concentration in the range of 10 ∼ 1000 µM with the limit of detection (LOD) of 9.518 µM (R 2 = 0.99). The on-site sensor is promising to offer new opportunities for pharmaceuticals analysis, on-site monitoring, and exposure risk assessment.

3.
Plants (Basel) ; 9(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709100

ABSTRACT

Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.

4.
Exp Dermatol ; 28(6): 742-746, 2019 06.
Article in English | MEDLINE | ID: mdl-30339718

ABSTRACT

Skin surface is constantly exposed to environmental and secreted stressors such as UV, air pollution and peroxidized sebum. The current study aims to use reconstructed human skin equivalents to demonstrate topical stressor-induced hyperpigmentation and evaluate bioactives' potential protective effect. Given that polycyclic aromatic hydrocarbons are representative airborne particle-bound organic compounds with known relevance to pigmentation pathways, benzo(a)pyrene was selected as surrogate environmental toxin. On the other hand, squalene monohydroperoxides are well-characterized sebum peroxidation product under UV and pollutant exposure, thus are used as another representative skin stressor. With 3-day continuous exposure, 30 pmol/cm2 of benzo(a)pyrene and 3.4 nmol/cm2 of squalene monohydroperoxides induced significant viability loss, inflammatory response, and approximately 10 shades of pigmentation increase in pigmented living skin equivalents. At the same time, pretreatment and co-treatment with 12-hydroxystearic acid (12-HSA, 20 µmol/L) or niacinamide (5 mmol/L) ameliorated such stressor-induced consequences. Niacinamide was particularly effective against benzo(a)pyrene damage, probably as a substrate for important NAD+ dependent detoxification pathways, while 12-HSA was potent against squalene monohydroperoxides through barrier enhancing, anti-inflammatory, and anti-oxidative mechanisms. In summary, topical stressor-induced hyperpigmentation was achieved in vitro, with known bioactives showing protective benefits.


Subject(s)
Hyperpigmentation/prevention & control , Niacinamide/therapeutic use , Stearic Acids/therapeutic use , Vitamin B Complex/therapeutic use , Benzo(a)pyrene , Biological Assay , Humans , Hyperpigmentation/chemically induced , Melanins/metabolism , Monophenol Monooxygenase/metabolism , Squalene/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...