Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 102(48): e36290, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38050229

ABSTRACT

The objective of this study is to explore the potential mechanism of action of Total glucosides of paeony (TGP) in the treatment of autoimmune thyroiditis (AIT). The study utilized literature mining to obtain the active ingredients of TGP. Databases such as Super-PRED, similarity ensemble approach, and Swiss Target Prediction were utilized to predict the targets of the active ingredients. DisGeNET, Dangbank, GeneCards, online mendelian inheritance in man, and Pharmgkb databases were used to obtain the targets related to AIT. The Venn Online tool was used to screen the intersecting genes between the active ingredients and AIT targets. The STRING database was employed to analyze protein protein interaction. Gene ontology bio-enrichment and Kyoto encyclopedia of genes and genomes enrichment of common targets were analyzed using R language. Finally, molecular docking was performed using AutoDockTools-1.5.6 software for validation. The study identified 5 active ingredients of TGP, 283 ingredient targets, 7120 disease targets, 220 intersecting targets, 30 entries for gene ontology analysis, and 30 pathways for Kyoto encyclopedia of genes and genomes analysis. The important targets of the protein protein interaction network were identified as interleukin-6, proto-oncogene tyrosine-protein kinase, epidermal growth factor receptor, among others. The molecular docking validation results showed that Paeoniflorin, albiflorin, and benzoylpaeoniflorin and oxypaeoniflor all bind well to interleukin-6, epidermal growth factor receptor, and proto-oncogene tyrosine-protein kinase. This study reveals the multi-component, multi-target and multi-pathway mechanism of action of TGP in regulating AIT and provides a reference for subsequent basic research.


Subject(s)
Drugs, Chinese Herbal , Hashimoto Disease , Thyroiditis, Autoimmune , Humans , Molecular Docking Simulation , Network Pharmacology , Interleukin-6 , Databases, Genetic , ErbB Receptors , Glucosides/pharmacology , Glucosides/therapeutic use , Tyrosine , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
J Colloid Interface Sci ; 650(Pt B): 1842-1850, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37515974

ABSTRACT

Sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline solution has restricted the rapid development of hydrogen economy. Constructing catalyst with metal-oxide heterostructures can enhance HOR performance; however, little studies concentrate on charge transfer between them, and the corresponding effects on reactions remain unclear. Herein, we report charge-transfer-adjustable CeO2/Rh interfaces uniformly dispersed on multiwalled carbon nanotube (CNT), which exhibit excellent alkaline HOR performance. Results confirm that the charge transfer from Rh to CeO2 could be conveniently tuned via thermal treatment. Consequently, the adsorption free energies of H* in Rh sites and OH* adsorption strength in CeO2 could be adjusted, as corroborated by density functional theory study. The optimized CeO2/Rh interfaces exhibit an exchange current density and a mass-specific kinetic current of 0.53 mA cmPGM-2 and 830 A gPGM-1 at an overpotential of 50 mV, respectively, which surpasses most of the advanced noble-metal-based electrocatalysts. This work provides a new insight of harnessing charge transfer of heterostructure to enhance catalytic activities.

3.
Nanotechnology ; 27(39): 395704, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27561004

ABSTRACT

In this report, we describe a method for modifying electrical and optoelectrical properties of CdS nanobelts using low-energy (lower than 10 keV) e-beam irradiation in a scanning electron microscope. The electrical conductivity of the nanobelts was dramatically improved via the irradiation of e-beams. The modified conductivity of the nanobelts depends on the energy of the e-beam; it exhibits a larger photocurrent and higher external quantum efficiency but slower time-response than that before the modification. A possible mechanism about the modification is the increase of electron accumulation (injected electrons) in the nanobelts due to e-beam irradiation. In addition, the optoelectrical modification could be caused by the trapped electrons in the nanobelts and the decrease of contact resistance between the nanobelts and metal electrodes induced by e-beam irradiation. The results of this work are significant for the in situ study of semiconductor nanostructures in the electron microscope. Besides, the method of electrical and optoelectrical modification presented here has potential application in electronics and optoelectronics.

4.
ACS Appl Mater Interfaces ; 7(49): 27131-9, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26583430

ABSTRACT

We report the successful construction of plasmonic core-satellite nanostructured assemblies on two-dimensional substrates, based on a strategy of combining DNA-functionalized plasmonic nanoparticles (NPs) with the specific recognition ability toward target to enable satellite NPs to self-assemble around the core immobilized on substrates. A strongly coupled plasmonic resonance band was observed because of the close proximity between core and satellite NPs, which presented significant red-shift and enhanced extinction with respect to the local surface plasmon resonance (LSPR) band of individual core NPs on the substrate. The functionality of this core-satellite nanostructured assembly as a biosensor was further explored, and the changes in extinction intensity and the peak shift of the plasmonic coupling resonance band arising from the probe-target DNA binding event all proved to be useful criteria for target DNA detection. Moreover, high selectivity down to single-base mismatched DNA was achieved using this strongly coupled plasmonic core-satellite nanostructured assembly on a substrate. Such substrate-based detection was advantageous, and its reusability and high cycle stability were demonstrated after five cycles of disassembly and reassembly. Our work demonstrates the biosensing capacity of this DNA-functionalized plasmonic nanoassembly model system on two-dimensional substrate, which is also applicable to the detection of numerous DNA-recognized biomolecules. Likewise, the presented construction method can be extended to fabricate other compositional core-satellite nanoassemblies.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Nanostructures/chemistry , Surface Plasmon Resonance
5.
ACS Appl Mater Interfaces ; 7(20): 10920-7, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25951984

ABSTRACT

The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.


Subject(s)
Crystallization/methods , Electrolytes/chemistry , Hypergravity , Ions/chemistry , Membranes, Artificial , Printing, Three-Dimensional , Diffusion , Materials Testing , Permeability
6.
Nanoscale ; 5(17): 8114-21, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23884477

ABSTRACT

Cu2ZnSnS4 is a promising solar absorbing material in solar cells due to its high absorption coefficient and abundance on earth. We have demonstrated that wurtzite Cu2ZnSnS4 nanoleaves could be synthesized through a facile solution-based method. Detailed investigation of the growth process indicates that α-Cu2S nanocrystals are first formed and then serve as a catalyst to introduce the Cu, Zn, and Sn species into the nanoleaf growth for fast ionic conduction. The structure of the as-synthesized nanoleaves is characterized by powder X-ray diffraction, high-resolution transmission electron microscopy, fast Fourier transform, and energy dispersive X-ray spectroscopy mapping. Photoresponses of Cu2ZnSnS4 nanoleaves are evaluated by I-V curves of a Cu2ZnSnS4 nanoleaf film. It is believed that the enhancement of the photoresponse current of the Cu2ZnSnS4 nanoleaf film can be attributed to fast carrier transport due to the single crystalline nature and enhanced light absorption resulting from larger absorption areas of the Cu2ZnSnS4 nanoleaves.

SELECTION OF CITATIONS
SEARCH DETAIL
...