Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38541436

ABSTRACT

Titanium alloys have high specific strength and corrosion resistance, which have promising applications in industry. However, the machinability of titanium alloys is limited due to their crystal lattice and physical properties. Thus, in recent years, the superplastic forming of titanium alloys has been intensively developing, in particular, forming at low temperatures and/or high strain rates. In this work, a tensile test of low-cost Ti-2Fe-0.1B alloys was carried out at a temperature of 550~750 °C and a strain rate of 1 × 10-3 s-1~1 × 10-2 s-1. The results showed that the alloy exhibited good superplasticity even at a high strain rate (1 × 10-2 s-1) and a low deformation temperature of 550 °C; the elongation of the alloy in this state reached 137.5%. The high strain rate sensitivity coefficient m (0.3) and the maximum elongation (452%) were obtained at a strain rate of 1 × 10-3 s-1 and a temperature of 750 °C. Characteristics of the microstructure showed that during superplastic deformation, the recrystallization and grain boundary sliding of the alloy phases were accelerated, which could be ascribed to the effect of the element Fe. At the same time, the TiB phase located around the primary elongated α grains could also induce dynamic recrystallization and dynamic globularization during deformation.

2.
Materials (Basel) ; 16(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37109790

ABSTRACT

In the present study, a novel Ti-2Fe-0.1B alloy was processed using equal channel angular pressing (ECAP) via route Bc for four passes. The isochronal annealing of the ultrafine-grained (UFG) Ti-2Fe-0.1B alloy was conducted at various temperatures between 150 and 750 °C with holding times of 60 min. The isothermal annealing was performed at 350-750 °C with different holding times (15 min-150 min). The results indicated that no obvious changes in the microhardness of the UFG Ti-2Fe-0.1B alloy are observed when the annealing temperature (AT) is up to 450 °C. Compared to the UFG state, it was found that excellent strength (~768 MPa) and ductility (~16%) matching can be achieved for the UFG Ti-2Fe-0.1B alloy when annealed at 450 °C. The microstructure of the UFG Ti-2Fe-0.1B alloy before and after the various annealing treatments was characterized using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). It was found that the average grain size remained at an ultrafine level (0.91-1.03 µm) when the annealing temperature was below 450 °C. The good thermal stability of the UFG Ti-2Fe-0.1B alloy could be ascribed to the pinning of the TiB needles and the segregation of the Fe solute atoms at the grain boundaries, which is of benefit for decreasing grain boundary energy and inhibiting the mobility of grain boundaries. For the UFG Ti-2Fe-0.1B alloy, a recrystallization activation energy with an average value of ~259.44 KJ/mol was analyzed using a differential scanning calorimeter (DSC). This is much higher than the lattice self-diffusion activation energy of pure titanium.

3.
Materials (Basel) ; 13(22)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202781

ABSTRACT

In the present study, the unique bimodal grain size distribution microstructure with the ultrafine substrate and embedded macro grains was fabricated by a traditional hot-rolling process in a novel low-cost Ti-2Fe-0.1B titanium alloy, which possesses a good combination of strength (around 663 MPa) and ductility (around 30%) without any post heat treatment. Meanwhile, the mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy after equal channel angular pressing (ECAP) deformation were studied. Results indicated that the average grain size decreased to 0.24 µm after 4 passes ECAP deformation, which led to the enhancement of tensile strength to around 854 MPa and good ductility to around 15%. In addition, corrosion resistance was also improved after ECAP due to the rapid self-repairing and thicker passivation film. Our study revealed that the novel low-cost titanium alloy after hot-rolling and ECAP could be used instead of Ti-6Al-4V in some industrial applications due to similar mechanical behavior and better corrosion resistance.

4.
Materials (Basel) ; 13(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872108

ABSTRACT

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a ß phase after the solution treatment at the α + ß region. After aging treatment, the secondary α phase precipitates in the ß matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters-the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + ß region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7-1459.0 MPa, 1135.1-1355.5 MPa, 5.2-11.8%, and 7.5-32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.

5.
Materials (Basel) ; 13(16)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824378

ABSTRACT

A self-designed Ti-35421 (Ti-3Al-5Mo-4Cr-2Zr-1Fe wt%) titanium alloy is a new type of low-cost high strength titanium alloy. In order to understand the hot deformation behavior of Ti-35421 alloy, isothermal compression tests were carried out under a deformation temperature range of 750-930 °C with a strain rate range of 0.01-10 s-1 in this study. Electron backscatter diffraction (EBSD) was used to characterize the microstructure prior to and post hot deformation. The results show that the stress-strain curves have obvious yielding behavior at a high strain rate (>0.1 s-1). As the deformation temperature increases and the strain rate decreases, the α phase content gradually decreases in the α + ß phase region. Meanwhile, spheroidization and precipitation of α phase are prone to occur in the α + ß phase region. From the EBSD analysis, the volume fraction of recrystallized grains was very low, so dynamic recovery (DRV) is the dominant deformation mechanism of Ti-35421 alloy. In addition to DRV, Ti-35421 alloy is more likely to occur in continuous dynamic recrystallization (CDRX) than discontinuous dynamic recrystallization (DDRX).

6.
J Nanosci Nanotechnol ; 20(6): 3568-3575, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31748053

ABSTRACT

Ultrafine nanoporous copper (UNP Cu) with a characteristic pore size of about 12 nm and a ligament size of about 14 nm was fabricated from amorphous Mg65Cu25Y10 precursor alloys after dealloying in a 0.1 M H2SO4 solution modified by poly(vinyly alcohol) polymers with a molecular weight of 105000 g/mol (PVA-124). The suppression of the surface diffusion from PVA-124 reduced the size of the nanopores and ligaments to 20 nm when the concentration of the added PVA-124 exceeded 0.1 g L-1. When the concentration of the added PVA-124 exceeded 2 g L-1, PVA-124 triggered the polymerization process. The resultant polymer surface layer on the fcc Cu ligaments was shown to reduce the rate of selective dissolution. It was also shown that extending the immersion time resulted in a suppression of coarsening. The introduction of PVA-124 polymer into acids resulted in a higher viscosity of the dealloying solutions, particularly when the concentration of PVA-124 was higher than 1.0 g L-1. This viscosity was shown not only to reduced rate of diffusion of Cu adatoms in PVA-124 solutions, but also forced the accumulation of Cu adatoms to form small scale UNP Cu.

SELECTION OF CITATIONS
SEARCH DETAIL
...