Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Article in English | MEDLINE | ID: mdl-38725850

ABSTRACT

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Subject(s)
Adenosine , Lipopolysaccharides , Macrophages , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Animals , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Methylation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Methyltransferases/metabolism , Methyltransferases/genetics , Inflammation/metabolism , Colon/metabolism , Colon/drug effects , Male , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/metabolism , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/genetics , RAW 264.7 Cells
2.
Adv Sci (Weinh) ; : e2404073, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757622

ABSTRACT

Ferroptosis plays important roles both in normal physiology and multiple human diseases. It is well known that selenoprotein named glutathione peroxidase 4 (GPX4) is a crucial regulator for ferroptosis. However, it remains unknown whether other selenoproteins responsible for the regulation of ferroptosis, particularly in gut diseases. In this study, it is observed that Selenoprotein I (Selenoi) prevents ferroptosis by maintaining ether lipids homeostasis. Specific deletion of Selenoi in intestinal epithelial cells induced the occurrence of ferroptosis, leading to impaired intestinal regeneration and compromised colonic tumor growth. Mechanistically, Selenoi deficiency causes a remarkable decrease in ether-linked phosphatidylethanolamine (ePE) and a marked increase in ether-linked phosphatidylcholine (ePC). The imbalance of ePE and ePC results in the upregulation of phospholipase A2, group IIA (Pla2g2a) and group V (Pla2g5), as well as arachidonate-15-lipoxygenase (Alox15), which give rise to excessive lipid peroxidation. Knockdown of PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis phenotypes, suggesting that they are downstream effectors of SELENOI. Strikingly, GPX4 overexpression cannot rescue the ferroptosis phenotypes of SELENOI-knockdown cells, while SELENOI overexpression can partially rescue GPX4-knockdown-induced ferroptosis. It suggests that SELENOI prevents ferroptosis independent of GPX4. Taken together, these findings strongly support the notion that SELENOI functions as a novel suppressor of ferroptosis during colitis and colon tumorigenesis.

3.
J Pineal Res ; 76(4): e12963, 2024 May.
Article in English | MEDLINE | ID: mdl-38779971

ABSTRACT

Artificial light at night (ALAN) is an emerging environmental pollutant that threatens public health. Recently, ALAN has been identified as a risk factor for obesity; however, the role of ALAN and its light wavelength in hepatic lipid metabolic homeostasis remains undetermined. We showed that chronic dim (~5 lx) ALAN (dLAN) exposure significantly promoted hepatic lipid accumulation in obese or diabetic mice, with the most severe effect of blue light and little effect of green or red light. These metabolic phenotypes were attributed to blue rather than green or red dLAN interfering with hepatic lipid metabolism, especially lipogenesis and lipolysis. Further studies found that blue dLAN disrupted hepatic lipogenesis and lipolysis processes by inhibiting hepatic REV-ERBs. Mechanistically, feeding behavior mediated the regulation of dLAN on hepatic REV-ERBs. In addition, different effects of light wavelengths at night on liver REV-ERBs depended on the activation of the corticosterone (CORT)/glucocorticoid receptor (GR) axis. Blue dLAN could activate the CORT/GR axis significantly while other wavelengths could not. Notably, we demonstrated that exogenous melatonin could effectively inhibit hepatic lipid accumulation and restore the hepatic GR/REV-ERBs axis disrupted by blue dLAN. These findings demonstrate that dLAN promotes hepatic lipid accumulation in mice via a short-wavelength-dependent manner, and exogenous melatonin is a potential therapeutic approach. This study strengthens the relationship between ALAN and hepatic lipid metabolism and provides insights into directing ambient light.


Subject(s)
Diet, High-Fat , Homeostasis , Light , Lipid Metabolism , Liver , Melatonin , Animals , Melatonin/pharmacology , Mice , Liver/metabolism , Liver/drug effects , Lipid Metabolism/drug effects , Lipid Metabolism/radiation effects , Diet, High-Fat/adverse effects , Homeostasis/drug effects , Male , Mice, Inbred C57BL , Blue Light
4.
ACS Appl Mater Interfaces ; 16(11): 13439-13452, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456847

ABSTRACT

Inflammatory bowel diseases have a high rate of mortality and pose a serious threat to global public health. Selenium is an essential trace element, which has been shown to play important roles in redox control and antioxidant defense. Microorganisms play important roles in the reduction of toxic inorganic selenium (selenite and selenate) to less-toxic biogenic selenium nanoparticles (Bio-SeNPs), which have higher biocompatibility. In the present study, novel Bio-SeNPs with high stability were synthesized using probiotic Bifidobacterium animalis subsp. lactis H15, which was isolated from breastfed infant feces. The Bio-SeNPs with a size of 122 nm showed stability at various ionic strengths, temperatures, and in simulated gastrointestinal fluid, while chemosynthetic SeNPs underwent aggregation. The main surface protein in the Bio-SeNPs was identified as chaperone GroEL by liquid chromatography-tandem mass spectrometry. The overexpression and purification of GroEL demonstrated that GroEL controlled the assembly of Bio-SeNPs both in vitro and in vivo. In vivo, oral administration of Bio-SeNPs could alleviate dextran sulfate sodium-induced colitis by decreasing cell apoptosis, increasing antioxidant capacity and the number of proliferating cells, and improving the function of the intestinal mucosal barrier. In vitro experiments verified that Bio-SeNPs inhibited lipopolysaccharide-induced toll-like receptor 4/NF-κB signaling pathway activation. These results suggest that the Bio-SeNPs with high stability could have potential as a nutritional supplement for the treatment of colitis in nanomedicine applications.


Subject(s)
Bifidobacterium animalis , Colitis , Nanoparticles , Selenium , Humans , Selenium/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Bifidobacterium animalis/metabolism , Nanoparticles/chemistry , Colitis/chemically induced , Colitis/drug therapy
5.
Adv Healthc Mater ; : e2400064, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457693

ABSTRACT

Hyperlipidemia is considered as a high-risk factor for leading to coronary heart disease. MicroRNA-148a-3p (miR-148a-3p) inhibitor is a potential therapeutic target to bind low-density lipoprotein cholesterol receptors (LDLR) for decreasing the levels of low-density lipoprotein cholesterol in plasma. However, the therapeutic effects are not ideal in the clinical translation of nucleic acids treatment, owing to the short circulation time in vivo. Therefore, a platelet membrane (PM) cloaks Se nanoparticles (SeNPs) delivery system with chitosan (CS) modifies and miR-148a-3p inhibitors encapsulated is designed (PM/CS-SeNPs/miR). The PM/CS-SeNPs/miR shows a uniform shell-core structure with a particle size of ≈90 nm. Co-delivering miR-148a-3p inhibitors and Se effectively alleviate hyperlipidemia via LDLR pathway and Toll-Like Receptor 4 (TLR-4)/NF-κB signaling pathway, respectively. Furthermore, coated by PM, PM/CS-SeNPs/miR successfully prolong circulation time to 48 h in vivo and quickly target to liver with no toxicity. This dual combination therapy with miRNAs and Se based on nanoparticles targeted delivery presents a high-performance strategy for precise hyperlipidemia treatment.

6.
Biosens Bioelectron ; 251: 116132, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38382270

ABSTRACT

Early detection of Toxoplasma gondii (T. gondii) is critical due to a lack of effective treatment for toxoplasmosis.This study established a simple, cost-effective, and rapid colorimetric detection method for T. gondii. The entire testing process, from sample collection to results, takes only 0.5 h. These characteristics fulfill the demands of researchers seeking rapid target detection with minimal equipment reliance. For genomic extraction, this study evaluated the ability of two filter papers to capture genomes. A rapid genomic extraction device combined with the two filter papers was designed to simplify the genomic extraction process, which was completed within 10 min and increased the detection sensitivity tenfold. The method utilized a simplified primer design for isothermal amplification, namely allosteric strand displacement (ASD), and employed an underutilized commercial color indicator, Bromothymol Blue (BTB), for signal output. Compared with other reported indicators, BTB exhibited a more pronounced color change, shifting from blue to yellow in positive samples, facilitating easier visual differentiation. The reaction was completed in 20 min with a limit of detection (LOD) as low as 0.014 T. gondii per microliter.


Subject(s)
Biosensing Techniques , Toxoplasma , Toxoplasma/genetics , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , DNA, Protozoan/genetics , Bromthymol Blue
7.
J Hazard Mater ; 467: 133647, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335608

ABSTRACT

The excessive use of tetracycline poses a threat to human health, making it essential to monitor and regulate its usage. While whole-cell biosensors offer a simple and cost-effective method, their utility is constrained by limitations in sensitivity, portability, and robustness, hindering real-time measurements within complex environmental contexts. In this study, a ratiometric i/cTetR synthetic biosensing test strip with an engineered modified dual-fluorescence reporting was developed for detecting Tet antibiotics in water and food. First, the standardized unidirectional promoter PtetR by tailoring and screening TetR transcription factor binding sites and verified by molecular docking, shortening the detection time. Secondly, decoupling the sensing and reporting modules enhances the biosensor's performance, eliminating genetic background leakage and tripling the output signal. Thirdly, a ratiometric dual fluorescence signal i/cTetR biosensing test strip was designed. Under the light box LED/UV light source, the dual signal output method significantly reduced false negative results and enhanced the anti-interference capability of the biosensor. The i/cTetR strips can detect Tet in tap water (5-1280 µg/mL) and milk (50-3200 µg/kg) within 45 min in high volume on-site without separation and purification. This study provides a standardized and universal sensing method for the field detection of antibiotic contaminants.


Subject(s)
Biosensing Techniques , Tetracycline , Humans , Molecular Docking Simulation , Anti-Bacterial Agents/analysis , Coloring Agents , Biosensing Techniques/methods , Water
8.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255808

ABSTRACT

Pregnancy is a highly intricate and delicate process, where inflammation during early stages may lead to pregnancy loss or defective implantation. Melatonin, primarily produced by the pineal gland, exerts several pharmacological effects. N6-methyladenosine (m6A) is the most prevalent mRNA modification in eukaryotes. This study aimed to investigate the association between melatonin and m6A during pregnancy and elucidate the underlying protective mechanism of melatonin. Melatonin was found to alleviate lipopolysaccharide (LPS)-induced reductions in the number of implantation sites. Additionally, it mitigated the activation of inflammation, autophagy, and apoptosis pathways, thereby protecting the pregnancy process in mice. The study also revealed that melatonin regulates uterine m6A methylation levels and counteracts abnormal changes in m6A modification of various genes following LPS stimulation. Furthermore, melatonin was shown to regulate m6A methylation through melatonin receptor 1B (MTNR1B) and subsequently modulate inflammation, autophagy, and apoptosis through m6A. In conclusion, our study demonstrates that melatonin protects pregnancy by influencing inflammation, autophagy, and apoptosis pathways in an m6A-dependent manner via MTNR1B. These findings provide valuable insights into the mechanisms underlying melatonin's protective effects during pregnancy and may have implications for potential therapeutic strategies in managing pregnancy-related complications.


Subject(s)
Abortion, Spontaneous , Adenine , Melatonin , Animals , Female , Mice , Pregnancy , Adenine/analogs & derivatives , Inflammation , Lipopolysaccharides/toxicity , Melatonin/pharmacology , Melatonin/therapeutic use , Receptor, Melatonin, MT2/genetics
9.
Talanta ; 271: 125664, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38237281

ABSTRACT

We presented a label-free fluorescent biosensor based on magnetic dual-aptamer allosteric regulation of ß-lactoglobulin (ß-LG) detection. The bovine serum albumin (BSA) acted as the bridge to connect amino-modified magnetic beads and aptamer, which synthesized pyramid-type probes (MBAP) with high capture and reduced nonspecific adsorption. Moreover, the original aptamer was tailored and then designed as a bivalent aptamer to fabricate allosteric signal probes (ASP). The ASP can both specifically capture ß-LG and output the fluorescence signal. The detection mechanism is as follows. The combination of the dual-aptamer and ß-LG triggered the allosteric change, resulting in the release of SYBR Green (SG I) from the allosteric signal probe and change signals. This method exhibits a broad linear detection range from 10 ng/mL to 1 mg/mL and the limit of detection reaches as low as 8.06 ng/mL. This study provides a highly generalizable strategy for protein biomolecular detection via replacing different target aptamers.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Lactoglobulins , Allosteric Regulation , Coloring Agents , Biosensing Techniques/methods
10.
Cell Commun Signal ; 22(1): 18, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195552

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) as a chronic disease especially in Western countries, is still a tough question in the clinical therapy. With the rising prevalence of various chronic diseases, liver transplantation is expected to be the most common therapy after the next 10 years. However, there is still no approved drug for NAFLD, and targeted therapy for NAFLD is urgent. Exosomes as a kind of extracellular vesicle are cell-derived nanovesicles, which play an essential role in intercellular communication. Due to complex cell-cell interactions in the liver, exosomes as therapeutic drugs or drug delivery vesicles may be involved in physiological or pathological processes in NAFLD. Compared with other nanomaterials, exosomes as a cell-free therapy, are not dependent on cell number limitation, which means can be administered safely in high doses. Apart from this, exosomes with the advantages of being low-toxic, high stability, and low-immunological are chosen for targeted therapy for many diseases. In this review, firstly we introduced the extracellular vesicles, including the biogenesis, composition, isolation and characterization, and fundamental function of extracellular vesicles. And then we discussed the modification of extracellular vesicles, cargo packing, and artificial exosomes. Finally, the extracellular vesicles for the therapies of NAFLD are summarized. Moreover, we highlight therapeutic approaches using exosomes in the clinical treatment of NAFLD, which provide valuable insights into targeting NAFLD in the clinical setting.


Subject(s)
Exosomes , Extracellular Vesicles , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/therapy , Obesity/complications , Obesity/therapy
11.
Ecotoxicol Environ Saf ; 269: 115782, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38056121

ABSTRACT

Aflatoxin B1 (AFB1) is a major food and feed pollutant that endangers public health. Previous studies have shown that exposure to AFB1 causes neurotoxicity in the body. However, the mechanism of neurotoxicity caused by AFB1 is not well understood, and finding a workable and practical method to safeguard animals from AFB1 toxicity is essential. This study confirmed that AFB1 caused endoplasmic reticulum stress (ER stress) and apoptosis in hippocampal neurons using C57BL/6 J mice and HT22 cells as models. In vitro experiments showed that the aryl hydrocarbon receptor (AHR) plays a significant role in the cytotoxicity of AFB1. Finally, we assessed how hesperetin protecting against the neurotoxicity caused by AFB1. Our findings demonstrated that AFB1 increased the levels of BAX and Cleaved-Caspase3 proteins, while decreasing the levels of BCL2 protein in the CA1 and CA3 regions of the hippocampus. The AFB1 increased the expression of AHR and activated nuclear translocation. It also elevated the expression levels of Chop, GRP78, p-IRE1/ Xbp1s, and p-PERK/p-EIF2a. Importantly, we also discovered for the first time that blocking AHR in HT22 cells dramatically reduced the level of ER stress and apoptosis caused by AFB1. In vivo and in vitro studies, supplementation of hesperetin effectively reversed AFB1-induced cytotoxicity. We have demonstrated that hesperetin effectively restored the imbalance in the GSH/GST system in HT22 cells treated with AFB1. Furthermore, we observed that elevated GSH levels facilitated the formation of AFB1-GSH complexes, which enhanced the excretion of AFB1. Therefore, hesperetin improves ER stress-induced apoptosis by reducing AFB1 activation of AHR.


Subject(s)
Aflatoxin B1 , Apoptosis , Hesperidin , Mice , Animals , Aflatoxin B1/toxicity , Mice, Inbred C57BL , Neurons , Hippocampus
12.
Poult Sci ; 103(2): 103331, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100948

ABSTRACT

Our previous study revealed that under monochromatic red light (RL), the melatonin nuclear receptor reduces the proliferation activity of broiler thymic lymphocytes through the P65 signaling pathway. The main objective of this study was to investigate the signal mechanism by which RL decreases thymic lymphocyte proliferation. Initially, broilers were purchased and randomly assigned to be fed under white light (WL), red light (RL), green light (GL), and blue light (BL). Pinealectomy was performed 3 d later, and the broilers were euthanized after 14 d. The results showed that the expression of the antiapoptotic proteins Bcl-2/Bcl-xl decreased under RL, while the expression of the pro-apoptotic factor Bax/caspase-3 and the pro-inflammatory factors INF-γ/TNF-α/IL-6 increased. After pinealectomy, the expression of Bax/TNF-α/IL-6 increased in conjunction with the decrease in Bcl-2 expression. In vitro experiments demonstrated that exogenous melatonin decreased the expression of Bax/TNF-α/IL-6 in thymic lymphocytes of chicks reared under RL. This melatonin-induced effect was enhanced by SR1078 (RORα/RORγ agonist) but attenuated by SR3335 (RORα antagonist) and BAY (P65 antagonist). These findings revealed that the melatonin nuclear receptor RORα/RORγ promotes the expression of the pro-apoptotic factor Bax/caspase-3 and the pro-inflammatory factors INF-γ/TNF-α/IL-6, while inhibiting the expression of the antiapoptotic factor Bcl-2/Bcl-xl. Our research suggested the signaling pathway of monochromatic red light impacts the apoptosis of thymus lymphocytes in broiler.


Subject(s)
Melatonin , Animals , Melatonin/pharmacology , Melatonin/metabolism , Chickens/metabolism , Caspase 3/metabolism , Interleukin-6 , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein , Signal Transduction , T-Lymphocytes/metabolism , Receptors, Cytoplasmic and Nuclear , Apoptosis
13.
Mol Nutr Food Res ; 67(23): e2300432, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786318

ABSTRACT

Selenium (Se) is a momentous metallic element that plays an irreplaceable role in biochemical activities. Se deficiency remains a nutritional challenge across the world. Organic Se supplementation is the most effective treatment means for Se deficiency. Organic Se transformed from Se-enriched probiotics show outstanding excellent properties in antibacteria, anti-oxidation, anti-inflammation, and immunoregulation. Studying the influencing factors for Se enrichment capacity and enrichment mechanisms of Se-enriched probiotics is conducive to the exploit of more potent Se-enriched probiotics. Se-enriched probiotics transform inorganic Se into Se nanoparticles (SeNPs), which have been widely used in animal husbandry and biomedical field. In this paper, the novel development of Se-enriched probiotics is reviewed, and the bioactivities of SeNPs are assessed, so as to display their potential application prospects. The excellent role of SeNPs in anti-oxidation is summarized, and the mechanism by which SeNPs improve Se deficiency and boost animal health is explained.


Subject(s)
Nanoparticles , Probiotics , Selenium , Animals , Selenium/pharmacology , Antioxidants/metabolism , Nanoparticles/chemistry , Oxidation-Reduction , Probiotics/pharmacology
14.
Crit Rev Biotechnol ; : 1-15, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880088

ABSTRACT

The advantages of rapid amplification of nucleic acid without a template based on terminal deoxyribonucleotidyl transferase (TdT) have been widely used in the field of biosensors. However, the catalytic efficiency of TdT is affected by extension conditions. The sensitivity of TdT- mediated biosensors can be improved only under appropriate conditions. Therefore, in this review, we provide a comprehensive overview of TdT extension characteristics and its applications in biosensors. We focus on the relationship between TdT extension conditions and extension efficiency. Furthermore, the construction strategy of TdT-mediated biosensors according to five different recognition types and their applications in targets are discussed and, finally, several current challenges and prospects in the field are taken into consideration.


Brief introduction to terminal deoxyribonucleotidyl transferase (TdT) characteristics.Provided a systematic and comprehensive summary of TdT extension conditions.Summarized the four effect factors of catalytic efficiency based on extension conditions and enzyme conformation.Sensing strategies of TdT-mediated biosensors for five different recognitions were summarized in detail.The applications of TdT-mediated biosensors in six targets were introduced in detail.

15.
Int J Biol Sci ; 19(12): 3937-3950, 2023.
Article in English | MEDLINE | ID: mdl-37564204

ABSTRACT

Ferroptosis, an iron-dependent cell death form, has recently been observed in the development of non-alcoholic fatty liver disease (NAFLD). Melatonin (Mel) shows potential benefits for preventing and treating liver diseases. Whether and how Mel ameliorates hepatic ferroptosis in NAFLD is not fully understood. Here we established a mouse model of NAFLD induced by long-term high-fat diet (HFD) feeding. We found that Mel treatment ameliorated global metabolic abnormalities and inhibited the progression of NAFLD in mice. Most importantly, Mel supplementation significantly improved HFD-induced iron homeostasis disorders in the liver, including iron overload and ferritin transport disorders. For another, Mel ameliorated HFD-induced hepatic lipid peroxidation. The recuperative role of exogenous Mel on hepatocyte ferroptosis was also observed in PA- or Erastin-treated HepG2 cells. Mechanistically, MT2, but not MT1, was involved in the effect of Mel. Furthermore, Mel treatment inhibited HFD or Erastin-activated ER stress and activated the PKA/IRE1 signaling pathway. Co-expression of p-PKA and p-IRE1 was enhanced by the MT2 antagonist. Inhibitions of PKA and IRE1 respectively improved hepatocyte ferroptosis, and activations of cAMP/PKA reversed Mel's effect on ferroptosis. Collectively, these findings suggest that exogenous Mel inhibits hepatic ferroptosis in NAFLD by ameliorating ER stress through the MT2/cAMP/PKA/IRE1 pathway, proving that Mel is a promising candidate drug for the treatment of hepatic ferroptosis in NAFLD.


Subject(s)
Ferroptosis , Melatonin , Non-alcoholic Fatty Liver Disease , Animals , Mice , Diet, High-Fat/adverse effects , Liver/metabolism , Melatonin/pharmacology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Endoplasmic Reticulum Stress
16.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37629009

ABSTRACT

Chronic psychological stress affects the health of humans and animals (especially females or pregnant bodies). In this study, a stress-induced model was established by placing eight-week-old female and pregnant mice in centrifuge tubes for 4 h to determine whether chronic stress affects the intestinal mucosal barrier and microbiota composition of pregnant mice. Compared with the control group, we found that norepinephrine (NE), corticosterone (CORT), and estradiol (E2) in plasma increased significantly in the stress group. We then observed a decreased down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, caspase-3, and expression of tight junction mRNA and protein. Moreover, the diversity and richness of the colonic microbiota decreased in pregnant mice. Bacteroidetes decreased, and pernicious bacteria were markedly increased. At last, we found E2 protects the intestinal epithelial cells after H2O2 treatment. Results suggested that 25 pg/mL E2 provides better protection for intestinal barrier after chronic stress, which greatly affected the intestinal mucosal barrier and altered the colonic microbiota composition.


Subject(s)
Hydrogen Peroxide , Intestines , Humans , Pregnancy , Female , Animals , Mice , Estrogens , Inflammation , Cytokines
17.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445914

ABSTRACT

Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.


Subject(s)
Brain Diseases , Memory , Animals , Memory Disorders , Brain
18.
J Nanobiotechnology ; 21(1): 222, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438752

ABSTRACT

Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.


Subject(s)
Colitis , Eucommiaceae , Inflammatory Bowel Diseases , Selenium , Animals , Mice , Selenium/pharmacology , Selenium/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
19.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237884

ABSTRACT

Excessive illumination is one of the most severe environmental factors that impacts the organism. There is growing evidence that obesity significantly contributes to the onset of chronic kidney disease. However, the effect of continuous light on the kidney and which color can produce an apparent phenomenon remains elusive. In this study, C57BL/6 mice given either a normal diet (LD-WN) or a high-fat diet (LD-WF) were subjected to a light cycle of 12 h of illumination followed by 12 h of darkness for 12 weeks. Meanwhile, 48 high-fat diet mice were given a 24 h monochromatic light exposure of varying colors (white, LL-WF; blue, LL-BF; green, LL-GF) for 12 weeks. As expected, the LD-WF mice showed significant obesity, kidney injury, and renal dysfunction compared with the LD-WN group. LL-BF mice had worse kidney injury than LD-WF mice, including higher Kim-1 and Lcn2. The kidney of the LL-BF group showed marked glomerular and tubular injury, with decreased levels of Nephrin, Podocin, Cd2ap, and α-Actinin-4 compared to LD-WF. LL-BF also reduced the antioxidant capacity, including GSH-Px, CAT, and T-AOC, increased the production of MDA, and inhibited the activation of the NRF2/HO-1 signaling pathway. Furthermore, LL-BF upregulated the mRNA levels of the pro-inflammatory factors Tnf-α, Il-6, and Mcp-1, decreasing the inhibitory inflammatory Il-4 expression. We observed increased plasma corticosterone (CORT), renal glucocorticoid receptors (GR) expression, Hsp90, Hsp70, and P23 mRNA levels. These findings suggested that LL-BF increased CORT secretion and affected glucocorticoid receptors (GR) in comparison to the LD-WF group. Moreover, in vitro research demonstrated that CORT treatment increased oxidative stress and inflammation, which was counteracted by adding a GR inhibitor. Thus, the sustained blue light worsened kidney damage, possibly by inducing elevated CORT and increasing oxidative stress and inflammation via GR.

20.
J Pineal Res ; 75(1): e12874, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37057339

ABSTRACT

It is widely known that lack of sleep damages the skin. Therefore, it is necessary to explore the relationship between sleep deprivation and skin damage and to find effective treatments. We established a 28-day sleep restriction (SR) mice model simulating continuous long-term sleep loss. We found that SR would damage the barrier function of mice's skin, cause oxidative stress damage to the skin, weaken the oscillations of the skin's biological clock, and make the circadian rhythm of Bacteroides disappear. The circadian rhythm of short-chain fatty acids (SCFA) receptors in the skin was disordered. After melatonin supplementation, the skin damage caused by SR was improved, the oscillations of the biological clock were enhanced, the circadian rhythm of Bacteroides was restored, and the rhythm of the receptor GPR43 of propionic acid was restored. We speculated that the improving effect of melatonin may be mediated by propionic acid produced by the gut microbiota. We verified in vitro that propionic acid could improve the keratinocytes barrier function of oxidative damage. We then consumed the gut microbiota of mice through antibiotics and found that oral melatonin could not improve skin damage. Moreover, supplementing mice with propionic acid could improve skin damage. Our research showed that lack of sleep impaired skin barrier function. Oral melatonin could improve skin damage by restoring the circadian rhythm of Bacteroides and its propionic acid metabolite.


Subject(s)
Gastrointestinal Microbiome , Melatonin , Animals , Mice , Melatonin/pharmacology , Melatonin/metabolism , Propionates/pharmacology , Sleep , Circadian Rhythm
SELECTION OF CITATIONS
SEARCH DETAIL
...