Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Control Release ; 371: 484-497, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851537

ABSTRACT

The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.


Subject(s)
Benzofurans , Drug Delivery Systems , Liposomes , Mesenchymal Stem Cells , Reperfusion Injury , Animals , Reperfusion Injury/therapy , Male , Benzofurans/administration & dosage , Brain Ischemia/therapy , Biomimetic Materials/chemistry , Biomimetic Materials/administration & dosage , Mice , Mice, Inbred C57BL , Mesenchymal Stem Cell Transplantation/methods
2.
Front Bioeng Biotechnol ; 12: 1358022, 2024.
Article in English | MEDLINE | ID: mdl-38344287

ABSTRACT

In recent years, lower limb exoskeletons have achieved satisfactory clinical curative effects in rehabilitating stroke patients. Furthermore, generating individualized trajectories for each patient and avoiding secondary injury in rehabilitation training are important issues. This paper explores the utilization of series elastic actuator (SEA) to deliver compliant force and enhance impact resistance in human-robot interaction, and we present the design of novel knee exoskeleton driven by SEA. Subsequently, the novel gait trajectory prediction method and compliant control method are proposed. The attention-based CNN-LSTM model is established to generate personalized gait trajectories for affected limbs, in which the spatial-temporal attention mechanism is adopted to improve the prediction accuracy. The compliant control strategy is proposed to nonlinearly and adaptively tune impedance parameters based on artificial potential field (APF) method, and active rehabilitation training is carried out in the coordination space to guarantee patient safety. The experimental results based on four healthy subjects demonstrated that synergetic gait prediction model could satisfactorily characterize the coordination movement with higher accuracy. The compliant control could limit the patient's movement in the safe coordination tunnel while considering personalization and flexibility.

3.
Autophagy ; 20(6): 1314-1334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38174993

ABSTRACT

Accumulating evidence suggests that cancer-associated fibroblast (CAF) macroautophagy/autophagy is crucial in tumor development and may be a therapeutic target for pancreatic ductal adenocarcinoma (PDAC). However, the role of CAF autophagy during immune surveillance and cancer immunotherapy is unclear. The present study revealed that the inhibition of CAF autophagy suppresses in vivo tumor development in immune-deficient xenografts. This deletion compromises anti-tumor immunity and anti-tumor efficacy both in vitro and in vivo by upregulating CD274/PDL1 levels in an immune-competent mouse model. A block in CAF autophagy reduced the production of IL6 (interleukin 6), disrupting high desmoplastic TME and decreasing USP14 expression at the transcription level in pancreatic cancer cells. We further identify USP14 as the post-translational factor responsible for downregulating CD274 expression by removing K63 linked-ubiquitination at the K280 residue. Finally, chloroquine diphosphate-loaded mesenchymal stem cell (MSC)-liposomes, by accurately targeting CAFs, inhibited CAF autophagy, improving the efficacy of immunochemotherapy to combat pancreatic cancer.Abbreviation: AIR: adaptive immune resistance; ATRA: all-trans-retinoicacid; CAF: cancer-associated fibroblast; CD274/PDL1: CD274 molecule; CM: conditioned medium; CQ: chloroquine diphosphate; CyTOF: Mass cytometry; FGF2/bFGF: fibroblast growth factor 2; ICB: immune checkpoint blockade; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; MS: mass spectrometer; MSC: mesenchymal stem cell; PDAC: pancreatic ductal adenocarcinoma; TEM: transmission electron microscopy; TILs: tumor infiltrating lymphocytes; TME: tumor microenvironment; USP14: ubiquitin specific peptidase 14.


Subject(s)
Autophagy , Cancer-Associated Fibroblasts , Immunotherapy , Pancreatic Neoplasms , Tumor Microenvironment , Autophagy/drug effects , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Humans , Mice , Immunotherapy/methods , Tumor Microenvironment/drug effects , Cell Line, Tumor , Adaptive Immunity/drug effects , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/drug therapy , B7-H1 Antigen/metabolism , Chloroquine/pharmacology , Chloroquine/therapeutic use
4.
Clin. transl. oncol. (Print) ; 25(10): 2972-2982, oct. 2023.
Article in English | IBECS | ID: ibc-225078

ABSTRACT

Objective Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors. Methods To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR. Results The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo. Conclusion In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future (AU)


Subject(s)
Animals , Mice , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Chimeric Antigen , Vaccines , T-Lymphocytes
5.
J Mol Histol ; 54(5): 521-537, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37676533

ABSTRACT

Colorectal cancer (CRC) at an advanced stage of cancer has a lower 5-year survival rate. Research on the molecular biological mechanisms of CRC is helpful for disease prevention and treatment. Long non-coding RNAs (lncRNAs) were shown to be suitable as therapeutic targets for CRC. Previously, our research team found that LINC01123 promoted proliferation and metastasis in CRC by regulating miR-625-5p and the LIM and SH3 protein 1 (LASP1). Therefore, this study speculated that the molecular sponge effect of LINC01123 on miR-625-5p affected the process of CRC via regulating LASP1. The LINC01123-silenced CRC cell models (using the LOVO and SW480 cells) and xenograft tumor models were established to verify the above conjecture. As a result, it was found that silencing LINC01123 inhibited viability, proliferation, metastasis, and invasion but promoted apoptosis in LOVO and SW480 cells. Additionally, the knockdown of LINC01123 inhibited the LASP1, N-cadherin, PCNA, and Bcl-2 protein levels and raised the E-cadherin, Bax, and Caspase-3 protein levels in vitro. Furthermore, it showed that LINC01123, as a molecular sponge, targeted the miR-625-5p/LASP1 axis. The results of the xenograft tumor assay further verified the above effects of LINCO1123-silenced on tumor growth in vivo. And the miR-625-5p mimics treatment promoted the aforementioned effects of silencing LINC01123 on CRC cells while overexpressing LASP1 has an antagonistic effect to silencing LINC01123. In conclusion, this study suggests that silencing LINC01123 inhibits the process of CRC via sponging to the miR-625-5p/LASP1 axis. This finding hopes to provide research fundamentals on the biological mechanism study of CRC.

6.
Immunology ; 170(3): 388-400, 2023 11.
Article in English | MEDLINE | ID: mdl-37501391

ABSTRACT

It is well known that chimeric antigen receptor T-cell immunotherapy (CAR-T-cell immunotherapy) has excellent therapeutic effect in haematological tumours, but it still faces great challenges in solid tumours, including inefficient T-cell tumour infiltration and poor functional persistence. Flap structure-specific endonuclease 1 (FEN1), highly expressed in a variety of cancer cells, plays an important role in both DNA replication and repair. Previous studies have reported that FEN1 inhibition is an effective strategy for cancer treatment. Therefore, we hypothesized whether FEN1 inhibitors combined with CAR-T-cell immunotherapy would have a stronger killing effect on solid tumours. The results showed that low dose of FEN1 inhibitors SC13 could induce an increase of double-stranded broken DNA (dsDNA) in the cytoplasm. Cytosolic dsDNA can activate the cyclic GMP-AMP synthase-stimulator of interferon gene signalling pathway and increase the secretion of chemokines. In vivo, under the action of FEN1 inhibitor SC13, more chemokines were produced at solid tumour sites, which promoted the infiltration of CAR-T cells and improved anti-tumour immunity. These findings suggest that FEN1 inhibitors could enable CAR-T cells to overcome poor T-cell infiltration and improve the treatment of solid tumours.


Subject(s)
Neoplasms , Humans , Signal Transduction , DNA , T-Lymphocytes/metabolism , Nucleotidyltransferases/genetics , Chemokines , Flap Endonucleases/genetics , Flap Endonucleases/metabolism
7.
Clin Transl Oncol ; 25(10): 2972-2982, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37079211

ABSTRACT

OBJECTIVE: Great success has been achieved in CAR-T cell immunotherapy in the treatment of hematological tumors. However, it is particularly difficult in solid tumors, because CAR-T is difficult to enter interior and exert long-term stable immune effects. Dendritic cells (DCs) can not only present tumor antigens but also promote the infiltration of T cells. Therefore, CAR-T cells with the help of DC vaccines are a reliable approach to treat solid tumors. METHODS: To test whether DC vaccine could promote CAR-T cell therapy in solid tumors, DC vaccine was co-cultured with MSLN CAR-T cells. The in vitro effects of DC vaccine on CAR-T were assessed by measuring cell proliferation, cell differentiation, and cytokine secretion. Effects of DC vaccine on CAR-T were evaluated using mice with subcutaneous tumors in vivo. The infiltration of CAR-T was analyzed using immunofluorescence. The persistence of CAR-T in mouse blood was analyzed using real-time quantitative PCR. RESULTS: The results showed that DC vaccine significantly enhanced the proliferation potential of MSLN CAR-T cells in vitro. DC vaccines not only promoted the infiltration of CAR-T cells, but also significantly improved the persistence of CAR-T in solid tumors in vivo. CONCLUSION: In conclusion, this study has demonstrated that DC vaccine can promote CAR-T therapy in solid tumors, which provides the possibility of widespread clinical application of CAR-T cells in the future.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Vaccines , Mice , Animals , T-Lymphocytes , T-Cell Exhaustion , Neoplasms/therapy , Immunotherapy, Adoptive/methods
8.
Acta Pharm Sin B ; 12(8): 3215-3232, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35967290

ABSTRACT

The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.

9.
Front Genet ; 12: 685371, 2021.
Article in English | MEDLINE | ID: mdl-34421995

ABSTRACT

BACKGROUND: The pathological stage of colon cancer cannot accurately predict recurrence, and to date, no gene expression characteristics have been demonstrated to be reliable for prognostic stratification in clinical practice, perhaps because colon cancer is a heterogeneous disease. The purpose was to establish a comprehensive molecular classification and prognostic marker for colon cancer based on invasion-related expression profiling. METHODS: From the Gene Expression Omnibus (GEO) database, we collected two microarray datasets of colon cancer samples, and another dataset was obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) further underwent univariate analysis, least absolute shrinkage, selection operator (LASSO) regression analysis, and multivariate Cox survival analysis to screen prognosis-associated feature genes, which were further verified with test datasets. RESULTS: Two molecular subtypes (C1 and C2) were identified based on invasion-related genes in the colon cancer samples in TCGA training dataset, and C2 had a good prognosis. Moreover, C1 was more sensitive to immunotherapy. A total of 1,514 invasion-related genes, specifically 124 downregulated genes and 1,390 upregulated genes in C1 and C2, were identified as DEGs. A four-gene prognostic signature was identified and validated, and colon cancer patients were stratified into a high-risk group and a low-risk group. Multivariate regression analyses and a nomogram indicated that the four-gene signature developed in this study was an independent predictive factor and had a relatively good predictive capability when adjusting for other clinical factors. CONCLUSION: This research provided novel insights into the mechanisms underlying invasion and offered a novel biomarker of a poor prognosis in colon cancer patients.

10.
Drug Dev Ind Pharm ; 46(1): 91-100, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31878816

ABSTRACT

Flurbiprofen (FP) is one of the most potent nonsteroidal anti-inflammatory drugs with very low bioavailability of approximately 12% following transdermal administration, compared to that after oral administration. This study aimed to deliver FP as a microemulsion (ME) gel by transdermal administration. Galangal essential oil (GEO) was extracted from Rhizoma Alpiniae Officinarum and identified by GC-MS. The most abundant constituent was determined to be 1,8-cineole (52.06%). Compared to azone, GEO was proved to exert significantly higher (p < .01) penetration enhancement effect and significantly (p < .001) lower skin cell toxicity. The formulation (FP-GEO-ME gel) was prepared using GEO as an oil phase and a penetration enhancer. Compared to that of FP solution, the enhancement ratio (ER) of FP-GEO-ME gel was 4.06. In addition, more than 25% 1,8-cineole permeated through the rat skin. In vivo pharmacokinetic studies revealed that the AUC0-t of FP after transdermal administration of FP-GEO-ME gel was higher by approximately 4.56-fold than that of marketed FP cataplasms. The relative bioavailability of FP and 1,8-cineole after transdermal administration compared to oral administration of FP-GEO-ME were determined to be 96.58% and 85.49%, respectively. FP-GEO-ME gel significantly inhibited carrageenan-induced hind-paw edema and decreased PGE2 levels in rat serum. GEO-ME gel also exhibited significant anti-inflammatory effects at 2 h after the therapy (p < .05). The synergistic effects of FP and GEO were expected for the application of FP-GEO-ME gel. In conclusion, GEO-ME gel may be a promising formulation for transdermal administration of anti-inflammatory hydrophobic drugs, such as FP.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Drug Delivery Systems , Flurbiprofen/administration & dosage , Oils, Volatile/administration & dosage , Administration, Cutaneous , Alpinia/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Area Under Curve , Biological Availability , Disease Models, Animal , Emulsions , Eucalyptol/pharmacokinetics , Flurbiprofen/pharmacokinetics , Flurbiprofen/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Male , Oils, Volatile/pharmacokinetics , Oils, Volatile/pharmacology , Permeability , Rats , Rats, Sprague-Dawley , Skin Absorption
11.
PLoS One ; 9(8): e104012, 2014.
Article in English | MEDLINE | ID: mdl-25084538

ABSTRACT

An individual-tree diameter growth model was developed for Cunninghamia lanceolata in Fujian province, southeast China. Data were obtained from 72 plantation-grown China-fir trees in 24 single-species plots. Ordinary non-linear least squares regression was used to choose the best base model from among 5 theoretical growth equations; selection criteria were the smallest absolute mean residual and root mean square error and the largest adjusted coefficient of determination. To account for autocorrelation in the repeated-measures data, we developed one-level and nested two-level nonlinear mixed-effects (NLME) models, constructed on the selected base model; the NLME models incorporated random effects of the tree and plot. The best random-effects combinations for the NLME models were identified by Akaike's information criterion, Bayesian information criterion and -2 logarithm likelihood. Heteroscedasticity was reduced with two residual variance functions, a power function and an exponential function. The autocorrelation was addressed with three residual autocorrelation structures: a first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and a compound symmetry structure (CS). The one-level (tree) NLME model performed best. Independent validation data were used to test the performance of the models and to demonstrate the advantage of calibrating the NLME models.


Subject(s)
Cunninghamia/anatomy & histology , Cunninghamia/growth & development , Nonlinear Dynamics , Trees/anatomy & histology , Trees/growth & development , China , Regression Analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...