Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37651187

ABSTRACT

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we described a complex structure of a dextran-coated gold-in-gold cage nanoparticle that enabled photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser could selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections, respectively. These effects were over 100 times greater than those seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We concluded that photothermal ablation using theranostic nanoparticles is a rapid, precise, and nontoxic method to detect and treat biofilm-associated infections.


Subject(s)
Nanoparticles , Photoacoustic Techniques , Wound Infection , Animals , Mice , Anti-Bacterial Agents , Biofilms , Gold/pharmacology , Gold/chemistry , Nanoparticles/chemistry , Precision Medicine
2.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214850

ABSTRACT

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.

3.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36766602

ABSTRACT

A key process in the development of atherosclerotic plaques is the recruitment of monocytes into the artery wall. Using spectral photon-counting computed tomography we examine whether monocyte deposition within the artery wall of ApoE-/- mouse can be detected. Primary mouse monocytes were labelled by incubating them with 15 nm gold nanoparticles coated with 11-mercaptoundecanoic acid The monocyte uptake of the particle was confirmed by electron microscopy of the cells before injection into 6-week-old apolipoprotein E deficient (ApoE-/-) mouse that had been fed with the Western diet for 10 weeks. Four days following injection, the mouse was sacrificed and imaged using a MARS spectral photon counting computed tomography scanner with a spectral range of 7 to 120 KeV with five energy bins. Imaging analysis showed the presence of X-ray dense material within the mouse aortic arch which was consistent with the spectral characteristic of gold rather than calcium. The imaging is interpreted as showing the deposition of gold nanoparticles containing monocytes within the mouse aorta. The results of our study determined that spectral photon-counting computed tomography could provide quantitative information about gold nanoparticles labelled monocytes in voxels of 90 × 90 × 90 µm3. The imaging was consistent with previous micro-CT and electron microscopy of mice using the same nanoparticles. This study demonstrates that spectral photon-counting computed tomography, using a MARS small bore scanner, can detect a fundamental atherogenic process within mouse models of atherogenesis. The present study demonstrates the feasibility of spectral photon-counting computed tomography as an emerging molecular imaging modality to detect atherosclerotic disease.

4.
ACS Appl Mater Interfaces ; 14(34): 39274-39284, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975982

ABSTRACT

Significant work has been done to develop nanoparticle contrast agents for computed tomography (CT), with a focus on identifying safer and more effective formulations. Contrast agents for spectral photon-counting computed tomography (SPCCT), a fast-growing imaging modality derived from conventional CT, have also recently gained considerable attention. In this study, we explored the synthesis of ultrasmall ytterbium nanoparticles (YbNP) and demonstrated that, potentially, they can be used as conventional CT and SPCCT contrast agents. These nanoparticles were tested in vitro for their cytotoxicity and contrast-generating properties with a variety of imaging systems. When scanned with conventional CT and SPCCT at clinically relevant energies, YbNP are significantly more attenuating than gold nanoparticles (AuNP), the contrast agents that have been most well studied. Furthermore, YbNP were studied for their potential application for labeling and monitoring hydrogels. The presence of the YbNP payload in hydrogels allowed for hydrogel localization and tracking in vivo. Additionally, the in vivo imaging results revealed that YbNP generate higher contrast when compared to AuNP used as a label. In summary, this is the first research study to examine ultrasmall YbNP as conventional CT and SPCCT contrast agents, as well as using them in a hydrogel system to make it radiopaque. These findings underscore YbNP's utility as CT and SPCCT contrast agents, as well as their potential for tracking hydrogels in vivo.


Subject(s)
Contrast Media , Metal Nanoparticles , Gold , Hydrogels , Metal Nanoparticles/toxicity , Phantoms, Imaging , Photons , Tomography, X-Ray Computed/methods , Ytterbium
5.
ACS Appl Mater Interfaces ; 14(30): 34354-34364, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35867906

ABSTRACT

The use of nanoparticles in the biomedical field has gained much attention due to their applications in biomedical imaging, drug delivery, and therapeutics. Silver telluride nanoparticles (Ag2Te NPs) have been recently shown to be highly effective computed tomography (CT) and dual-energy mammography contrast agents with good stability and biocompatibility, as well as to have potential for many other biomedical purposes. Despite their numerous advantageous properties for diagnosis and treatment of disease, the clinical translation of Ag2Te NPs is dependent on achieving high levels of excretion, a limitation for many nanoparticle types. In this work, we have synthesized and characterized a library of Ag2Te NPs and identified conditions that led to 3 nm core size and were renally excretable. We found that these nanoparticles have good biocompatibility, strong X-ray contrast generation, and rapid renal clearance. Our CT data suggest that renal elimination of nanoparticles occurred within 2 h of administration. Moreover, biodistribution data indicate that 93% of the injected dose (%ID) has been excreted from the main organs in 24 h, 95% ID in 7 days, and 97% ID in 28 days with no signs of acute toxicity in the tissues studied under histological analysis. To our knowledge, this renal clearance is the best reported for Ag2Te NP, while being comparable to the highest renal clearance reported for any type of nanoparticle. Together, the results herein presented suggest the use of GSH-Ag2Te NPs as an X-ray contrast agent with the potential to be clinically translated in the future.


Subject(s)
Contrast Media , Nanoparticles , Silver , Tissue Distribution , X-Rays
6.
ACS Appl Mater Interfaces ; 13(49): 58401-58410, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34846845

ABSTRACT

Most current nanoparticle formulations have relatively low clearance efficiency, which may hamper their likelihood for clinical translation. Herein, we sought to compare the clearance and cellular distribution profiles between sub-5 nm, renally-excretable silver sulfide nanoparticles (Ag2S-NPs) synthesized via either a bulk, high temperature, or a microfluidic, room temperature approach. We found that the thermolysis approach led to significant ligand degradation, but the surface coating shell was unaffected by the microfluidic synthesis. We demonstrated that the clearance was improved for Ag2S-NPs with intact ligands, with less uptake in the liver. Moreover, differential distribution in hepatic cells was observed, where Ag2S-NPs with degraded coatings tend to accumulate in Kupffer cells and those with intact coatings are more frequently found in hepatocytes. Therefore, understanding the impact of synthetic processes on ligand integrity and subsequent nano-biointeractions will aid in designing nanoparticle platforms with enhanced clearance and desired distribution profiles.


Subject(s)
Coated Materials, Biocompatible/metabolism , Nanoparticles/metabolism , Silver Compounds/metabolism , Animals , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Female , Ligands , Liver/chemistry , Liver/metabolism , Materials Testing , Mice , Mice, Nude , Nanoparticles/chemistry , Particle Size , Silver Compounds/chemistry , Tomography, X-Ray Computed
7.
ACS Biomater Sci Eng ; 7(7): 3209-3220, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34160196

ABSTRACT

Successful treatment of glioblastoma (GBM) is hampered by primary tumor recurrence after surgical resection and poor prognosis, despite adjuvant radiotherapy and chemotherapy. In search of improved outcomes for this disease, quisinostat appeared as a lead compound in drug screening. A delivery system was devised for this drug and to exploit current clinical methodology: an injectable hydrogel, loaded with both the quisinostat drug and radiopaque gold nanoparticles (AuNP) as contrast agent, that can release these payloads as a response to radiation. This hydrogel grants high local drug concentrations, overcoming issues with current standards of care. Significant hydrogel degradation and quisinostat release were observed due to the radiation trigger, providing high in vitro anticancer activity. In vivo, the combination of radiotherapy and the radiation-induced delivery of quisinostat from the hydrogel, successfully inhibited tumor growth in a mice model bearing xenografted human GBM tumors with a total response rate of 67%. Long-term tolerability was observed after intratumoral injection of the quisinostat loaded hydrogel. The AuNP payload enabled precise image-guided radiation delivery and the monitoring of hydrogel degradation using computed tomography (CT). These exciting results highlight this hydrogel as a versatile imageable drug delivery platform that can be activated simultaneously to radiation therapy and potentially offers improved treatment for GBM.


Subject(s)
Glioblastoma , Metal Nanoparticles , Glioblastoma/diagnostic imaging , Gold , Humans , Hydrogels , Neoplasm Recurrence, Local
8.
ACS Biomater Sci Eng ; 7(9): 4027-4047, 2021 09 13.
Article in English | MEDLINE | ID: mdl-33979137

ABSTRACT

Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.


Subject(s)
Hydrogels , Tissue Engineering , Drug Delivery Systems , Optical Imaging , Polymers
9.
Bioconjug Chem ; 31(2): 303-314, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31682405

ABSTRACT

Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.


Subject(s)
Gold/analysis , Metal Nanoparticles/analysis , Molecular Imaging/methods , Optical Imaging/methods , Animals , Cell Tracking/instrumentation , Cell Tracking/methods , Humans , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Molecular Imaging/instrumentation , Optical Imaging/instrumentation , Photoacoustic Techniques/instrumentation , Photoacoustic Techniques/methods , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods
10.
Sci Rep ; 9(1): 14912, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624285

ABSTRACT

Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.


Subject(s)
Contrast Media/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Tomography, X-Ray Computed/methods , Animals , Contrast Media/administration & dosage , Contrast Media/pharmacokinetics , Female , Gold/administration & dosage , Gold/pharmacokinetics , Injections, Intravenous , Male , Metal Nanoparticles/administration & dosage , Mice , Models, Animal , Particle Size , Phantoms, Imaging , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...