Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8018): 847-852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839959

ABSTRACT

The recent discovery of superconductivity in La3Ni2O7-δ under high pressure with a transition temperature around 80 K (ref. 1) has sparked extensive experimental2-6 and theoretical efforts7-12. Several key questions regarding the pairing mechanism remain to be answered, such as the most relevant atomic orbitals and the role of atomic deficiencies. Here we develop a new, energy-filtered, multislice electron ptychography technique, assisted by electron energy-loss spectroscopy, to address these critical issues. Oxygen vacancies are directly visualized and are found to primarily occupy the inner apical sites, which have been proposed to be crucial to superconductivity13,14. We precisely determine the nanoscale stoichiometry and its correlation to the oxygen K-edge spectra, which reveals a significant inhomogeneity in the oxygen content and electronic structure within the sample. The spectroscopic results also reveal that stoichiometric La3Ni2O7 has strong charge-transfer characteristics, with holes that are self-doped from Ni sites into O sites. The ligand holes mainly reside on the inner apical O and the planar O, whereas the density on the outer apical O is negligible. As the concentration of O vacancies increases, ligand holes on both sites are simultaneously annihilated. These observations will assist in further development and understanding of superconducting nickelate materials. Our imaging technique for quantifying atomic deficiencies can also be widely applied in materials science and condensed-matter physics.

2.
Res Sq ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014034

ABSTRACT

Biomarker identification is critical for precise disease diagnosis and understanding disease pathogenesis in omics data analysis, like using fold change and regression analysis. Graph neural networks (GNNs) have been the dominant deep learning model for analyzing graph-structured data. However, we found two major limitations of existing GNNs in omics data analysis, i.e., limited-prediction/diagnosis accuracy and limited-reproducible biomarker identification capacity across multiple datasets. The root of the challenges is the unique graph structure of biological signaling pathways, which consists of a large number of targets and intensive and complex signaling interactions among these targets. To resolve these two challenges, in this study, we presented a novel GNN model architecture, named PathFormer, which systematically integrate signaling network, priori knowledge and omics data to rank biomarkers and predict disease diagnosis. In the comparison results, PathFormer outperformed existing GNN models significantly in terms of highly accurate prediction capability (~30% accuracy improvement in disease diagnosis compared with existing GNN models) and high reproducibility of biomarker ranking across different datasets. The improvement was confirmed using two independent Alzheimer's Disease (AD) and cancer transcriptomic datasets. The PathFormer model can be directly applied to other omics data analysis studies.

3.
Cancers (Basel) ; 15(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37686486

ABSTRACT

Synergistic drug combinations provide huge potentials to enhance therapeutic efficacy and to reduce adverse reactions. However, effective and synergistic drug combination prediction remains an open question because of the unknown causal disease signaling pathways. Though various deep learning (AI) models have been proposed to quantitatively predict the synergism of drug combinations, the major limitation of existing deep learning methods is that they are inherently not interpretable, which makes the conclusions of AI models untransparent to human experts, henceforth limiting the robustness of the model conclusion and the implementation ability of these models in real-world human-AI healthcare. In this paper, we develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS) by mining the sub-molecular network of great importance. The key point of the interpretable GNN prediction model is a novel graph pooling layer, a self-attention-based node and edge pool (henceforth SANEpool), that can compute the attention score (importance) of genes and connections based on the genomic features and topology. As such, the proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network. Experiments on various well-adopted drug-synergy-prediction datasets demonstrate that (1) the SANEpool model has superior predictive ability to generate accurate synergy score prediction, and (2) the sub-molecular networks detected by the SANEpool are self-explainable and salient for identifying synergistic drug combinations.

4.
Nat Commun ; 14(1): 3221, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270582

ABSTRACT

A promising approach to the next generation of low-power, functional, and energy-efficient electronics relies on novel materials with coupled magnetic and electric degrees of freedom. In particular, stripy antiferromagnets often exhibit broken crystal and magnetic symmetries, which may bring about the magnetoelectric (ME) effect and enable the manipulation of intriguing properties and functionalities by electrical means. The demand for expanding the boundaries of data storage and processing technologies has led to the development of spintronics toward two-dimensional (2D) platforms. This work reports the ME effect in the 2D stripy antiferromagnetic insulator CrOCl down to a single layer. By measuring the tunneling resistance of CrOCl on the parameter space of temperature, magnetic field, and applied voltage, we verified the ME coupling down to the 2D limit and probed its mechanism. Utilizing the multi-stable states and ME coupling at magnetic phase transitions, we realize multi-state data storage in the tunneling devices. Our work not only advances the fundamental understanding of spin-charge coupling, but also demonstrates the great potential of 2D antiferromagnetic materials to deliver devices and circuits beyond the traditional binary operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...