Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Inj ; 38(3): 194-201, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38297513

ABSTRACT

AIM: To explore the potential role of microRNA miR-221-5p on the angiopoietin-1 (Ang-1)/Ang-2/Tie-2 signaling axis after subarachnoid hemorrhage (SAH) in a rat model. METHODS: Aspects of the rat's behavior were measured using the Kaoutzanis scoring system to test neurological responses. This included feeding behavior, body contraction, motor, and eye-opening responses. Brain sections were studied using transmission electron microscopy and Evans blue extravasation. Levels of Ang-1, Ang-2, and Tie-2 were determined by Western blot, while miR-221-5p was quantified using stem-loop real-time quantitative PCR (RT-qPCR). RESULTS: The SAH group responded worse to the neurological response test than the sham-operated group. The intercellular space was widened in the SAH group, but not in the sham-operated group. Evans blue dye leaked significantly more into brain tissue cells of the SAH group. Stem-loop qRT-PCR showed elevated miR-221-5p levels. Additionally, Ang-1 and Tie-2 were reduced but Ang-2 expression was increased after SAH. This led to a significant reduction of the Ang-1/Ang-2 ratio in the brain tissue, which was associated with the destruction of the blood-brain barrier. CONCLUSION: The data indicate that miR-221-5p might regulate blood-brain barrier dysfunction through the Ang-1/Ang-2/Tie-2 signaling axis, suggesting that it should be further investigated as a potential novel biomarker.


Subject(s)
MicroRNAs , Subarachnoid Hemorrhage , Rats , Animals , Blood-Brain Barrier , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Evans Blue/metabolism , MicroRNAs/metabolism
3.
Oncogene ; 41(36): 4244-4256, 2022 09.
Article in English | MEDLINE | ID: mdl-35906391

ABSTRACT

Lung cancer is the most common malignancy and the leading cause of cancer death worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Considering the emergence of resistance to therapies, it is urgent to develop more effective therapies to improve the prognosis. Here we reported that pancreatic progenitor cell differentiation and proliferation factor (PPDPF) deficiency inhibited LUAD development both in vitro and in vivo. Mechanistically, PPDPF induces hyperactive STAT3 by interfering STAT3-PTPN1 interaction. Activated STAT3 promoted BMPR2 transcription, which further inhibited apoptosis. Moreover, PPDPF reduced NK cell infiltration and activation to develop an immunosuppressive microenvironment, which was also mediated by STAT3. Furthermore, we identified that the expression of PPDPF was positively correlated with the malignant features of LUAD, as well as BMPR2 and p-STAT3 level in clinical samples. Therefore, our study suggests that PPDPF positively regulates BMPR2 expression and facilitates immune escape via regulating STAT3 activity, providing a potential therapy target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/pathology , Adenocarcinoma of Lung/pathology , Apoptosis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , Killer Cells, Natural/metabolism , Lung Neoplasms/pathology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
4.
Math Biosci Eng ; 17(2): 1548-1557, 2019 12 04.
Article in English | MEDLINE | ID: mdl-32233594

ABSTRACT

Objective: The purpose of this study is to investigate the relationship between N-methylN'-nitro-N-nitrosoguanidine (MNNG)-induced lung adenocarcinoma mouse of different stages and the level of exosomes in serum. Methods: Fifty KM mice (4 weeks old, weighing 18-22 g, female) were selected for experiment. MNNG was applied to induce lung adenocarcinoma in mice for model establishment. HE staining method was used to observe pathological changes of lung tissues. Exosomes in serum were extracted, and observed under a Transmission Electron Microscopy (TEM). Western blot was employed to examine the protein levels of exosome markers TSG101 and CD63. Results: HE staining results suggested MNNG-induced lung adenocarcinoma model mice were successfully constructed. The morphology of exosomes in serum of mouse model was observed under an Electron Microscopy, showing clear membrane structures presenting as saucer or concave hemisphere. In addition, the protein level of exosome marker CD63 in advanced mouse model was significantly up-regulated relative to that in the control group. Meanwhile, the expression of exosome marker protein TSG101 was found to be markedly increased in mouse models by comparison with that in control cases. Conclusion: In lung adenocarcinoma model mice, the occurrence and development of lung adenocarcinoma are greatly correlated with the expression level of exosomes in serum, which provides theoretical basis for the diagnosis of pathological staging of lung adenocarcinoma by exosomes.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Exosomes , Lung Neoplasms , Adenocarcinoma/chemically induced , Animals , Female , Lung , Lung Neoplasms/chemically induced , Mice
5.
World J Microbiol Biotechnol ; 30(11): 2861-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25108628

ABSTRACT

It was found in the present study that combined use of fusidic acid (FA) and berberine chloride (BBR) offered an in vitro synergistic action against 7 of the 30 clinical methicillin-resistant Staphylococcus aureus (MRSA) strains, with a fractional inhibitory concentration (FIC) index ranging from 0.5 to 0.19. This synergistic effect was most pronounced on MRSA 4806, an FA-resistant isolate, with a minimum inhibitory concentration (MIC) value of 1,024 µg/ml. The time-kill curve experiment showed that FA plus BBR yielded a 4.2 log10 c.f.u./ml reduction in the number of MRSA 4806 bacteria after 24-h incubation as compared with BBR alone. Viable count analysis showed that FA plus BBR produced a 3.0 log10 c.f.u./ml decrease in biofilm formation and a 1.5 log10 c.f.u./ml decrease in mature biofilm in viable cell density as compared with BBR alone. In addition, phase contrast micrographs confirmed that biofilm formation was significantly inhibited and mature biofilm was obviously destructed when FA was used in combination with BBR. These results provide evidence that combined use of FA and BBR may prove to be a promising clinical therapeutic strategy against MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Berberine/pharmacology , Drug Synergism , Fusidic Acid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Bacterial Load , Biofilms/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Staphylococcal Infections/microbiology
6.
FEBS J ; 278(7): 1075-85, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21251230

ABSTRACT

Candida infections have become an increasingly significant problem, mainly because of the widespread nature of Candida and drug resistance. There is an urgent need to develop new classes of drugs for the treatment of opportunistic Candida infections, especially in medically complex patients. Previous studies have confirmed that 2-amino-nonyl-6-methoxyl-tetralin muriate (10b) possesses powerful antifungal activity in vitro against Candia albicans. To clarify the underlying action mechanism, an oligonucleotide microarray study was performed in C. albicans SC5314 without and with 10b treatment. The analytical results showed that energy metabolism-related genes, including glycolysis-related genes (PFK1, CDC19 and HXK2), fermentation-related genes (PDC11, ALD5 and ADH1) and respiratory electron transport chain-related genes (CBP3, COR1 and QCR8), were downregulated significantly. Functional analysis revealed that 10b treatment increased the generation of endogenous reactive oxygen species, and decreased mitochondrial membrane potential, ubiquinone-cytochrome c reductase (complex III) activity and intracellular ATP levels in C. albicans SC5314. Also, addition of the antioxidant ascorbic acid reduced the antifungal activity of 10b significantly. These results suggest that mitochondrial aerobic respiration shift and endogenous reactive oxygen species augmentation might contribute to the antifungal activity of 10b against C. albicans. This information may prove to be useful for the development of new strategies to treat Candida infections.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , Microarray Analysis/methods , Reactive Oxygen Species/metabolism , Tetrahydronaphthalenes/pharmacology , Adenosine Triphosphate/metabolism , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Candida albicans/cytology , Candidiasis/drug therapy , Cell Respiration/drug effects , Drug Resistance, Fungal/drug effects , Electron Transport Complex I/drug effects , Electron Transport Complex I/physiology , Electron Transport Complex III/drug effects , Electron Transport Complex III/physiology , Gene Expression Profiling , Humans , Membrane Potential, Mitochondrial/drug effects , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/therapeutic use
7.
Biochem Biophys Res Commun ; 351(1): 140-5, 2006 Dec 08.
Article in English | MEDLINE | ID: mdl-17054915

ABSTRACT

Tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2, TH) is the rate-limiting enzyme in the biosynthesis of catecholamine neurotransmitters, dopamine (DA), noradrenaline (NE), and adrenaline, in the neurons. The regulated activity of TH is thought to play a critical role in modulating the functional activity of catecholaminergic neuronal systems in the brain. It is well known that the catecholaminergic neuronal systems are associated with depression. Here we showed that TH, delivered by protein transduction domain (PTD), passed through the blood-brain barrier and entered the neurons. Systemic TH treatment improved the behavioral despair in the forced swim test (FST) and the tail suspension test (TST), the two models widely used to screen the potential anti-depressant efficacy. The results indicated a novel and potential therapeutic use of TH in the depression disorder.


Subject(s)
Behavior, Animal/drug effects , Brain/metabolism , Depression/drug therapy , Depression/metabolism , Neurons/metabolism , Tyrosine 3-Monooxygenase/administration & dosage , Animals , Antidepressive Agents/administration & dosage , Brain/drug effects , Male , Mice , Mice, Inbred ICR , Neurons/drug effects , Treatment Outcome
8.
Brain Res ; 1109(1): 201-6, 2006 Sep 13.
Article in English | MEDLINE | ID: mdl-16872586

ABSTRACT

This study aimed to examine the effects of N-acetyl-L-cysteine (NAC) on protecting neurons function and improving learning and memory deficits in mice. Mice were intracerebroventricularly (icv) injected with the aggregated amyloid beta-peptide (Abeta) to produce Alzheimer's disease (AD). Learning and memory functions in mice were examined by the step through test and the water maze performance. The results showed that the mice pretreated with NAC had significantly greater retention in the step through test and shorter latencies in the water maze performance. Biochemical studies showed the potential role of free radical toxicity and the damage of cholinergic neurons in the Abeta-treated mice. There was an increased lipid peroxidation as indicated by elevated malondehyde (MDA) and decrease of glutathione (GSH) levels. There was also an increase in acetylcholinesterase (AChE) activity and a reduction in the choline acetyltransferase (ChAT) activity and acetylcholine (ACh) levels. NAC pretreatment significantly reversed the elevated MDA, AChE and the reduced GSH, ChAT and ACh in the Abeta-model mice. The results of the present study suggest the potential usage of the neuroprotective action of NAC on AD.


Subject(s)
Acetylcysteine/administration & dosage , Amyloid beta-Peptides , Expectorants/administration & dosage , Learning Disabilities/prevention & control , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Analysis of Variance , Animals , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Choline O-Acetyltransferase/metabolism , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Glutathione/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Injections, Intraventricular/methods , Learning Disabilities/chemically induced , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred Strains
9.
Neurosci Lett ; 368(3): 258-62, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15364407

ABSTRACT

Much evidence indicates that the memory and cognitive deficits of patients with Alzheimer's disease are closely associated with dysfunction of central cholinergic system. The degree of reduction of choline acetyltransferase activity in cerebral cholinergic neurons is significantly correlated with the severity of dementia or cognitive impairments observed in Alzheimer's disease. Therefore, Alzheimer's disease may be slowed by supplementation of exogenous choline acetyltransferase. Here we show that choline acetyltransferase mediated by TAT protein transduction domain passes through the blood-brain barrier and enters the neurons in mice, increasing choline acetyltransferase and neurotransmitter acetylcholine contents. The recombination TAT-choline acetyltransferase fusion protein injected intravenously improves the memory and cognitive dysfunction in Alzheimer's disease model mice induced by amyloid-beta peptide. Our results imply a novel and potentially effective way for Alzheimer's disease therapy.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Choline O-Acetyltransferase/administration & dosage , Complementary Therapies/methods , Disease Models, Animal , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/enzymology , Choline O-Acetyltransferase/biosynthesis , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/enzymology , Humans , Maze Learning/drug effects , Maze Learning/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...