Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38652608

ABSTRACT

Human activity recognition has played a crucial role in healthcare information systems due to the fast adoption of artificial intelligence (AI) and the internet of thing (IoT). Most of the existing methods are still limited by computational energy, transmission latency, and computing speed. To address these challenges, we develop an efficient human activity recognition in-memory computing architecture for healthcare monitoring. Specifically, a mechanism-oriented model of Ag/a-Carbon/Ag memristor is designed, serving as the core circuit component of the proposed in-memory computing system. Then, one-transistor-two-memristor (1T2M) crossbar array is proposed to perform high-efficiency multiply-accumulate (MAC) operation and high-density memory in the proposed scheme. To facilitate understanding of the proposed efficient human activity recognition in-memory computing design, self-attention ConvLSTM module, multi-head convolutional attention module, and recognition module are proposed. Furthermore, the proposed system is applied to perform human activity recognition, which contains eleven different human activities, including five different postural falls, and six basic daily activities. The experimental results show that the proposed system has advantages in recognition performance (≥ 0.20% accuracy, ≥ 1.10% F1-score) and time consumption (approximately 8∼10 times speed up) compared to existing methods, indicating an advancement in smart healthcare applications.

2.
IEEE Trans Nanobioscience ; 22(1): 52-62, 2023 01.
Article in English | MEDLINE | ID: mdl-35171775

ABSTRACT

Memristive technologies are attractive due to their non-volatility, high-density, low-power and compatibility with CMOS. For memristive devices, a model corresponding to practical behavioral characteristics is highly favorable for the realization of its neuromorphic system and applications. This paper presents a novel flexible memristor model with electronic resistive switching memory behavior. Firstly, the Ag-Au / MoSe2-doped Se / Au-Ag memristor is prepared using hydrothermal synthesis method and magnetron sputtering method, and its performance test is conducted on an electrochemical workstation. Then, the mathematical model and SPICE circuit model of the Ag-Au / MoSe2-doped Se / Au-Ag memristor are constructed. The model accuracy is verified by using the electrochemical data derived from the performance test. Furthermore, the proposed model is applied to the circuit implementation of spiking neural network with biological mechanism. Finally, computer simulations and analysis are carried out to verify the validity and effectiveness of the entire scheme.


Subject(s)
Electronics , Neural Networks, Computer , Computer Simulation
3.
iScience ; 25(10): 105240, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36262310

ABSTRACT

Memristor-based Pavlov associative memory circuit presented today only realizes the simple condition reflex process. The secondary condition reflex endows the simple condition reflex process with more bionic, but it is only demonstrated in design and involves the large number of redundant circuits. A FeO x -based memristor exhibits an evolution process from battery-like capacitance (BLC) state to resistive switching (RS) memory as the I-V sweeping increase. The BLC is triggered by the active metal ion and hydroxide ion originated from water molecule splitting at different interfaces, while the RS memory behavior is dominated by the diffusion and migration of ion in the FeO x switching function layer. The evolution processes share the nearly same biophysical mechanism with the second-order conditioning. It enables a hardware-implemented second-order associative memory circuit to be feasible and simple. This work provides a novel path to realize the associative memory circuit with the second-order conditioning at hardware level.

4.
Entropy (Basel) ; 24(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35741480

ABSTRACT

The rapid development of smart factories, combined with the increasing complexity of production equipment, has resulted in a large number of multivariate time series that can be recorded using sensors during the manufacturing process. The anomalous patterns of industrial production may be hidden by these time series. Previous LSTM-based and machine-learning-based approaches have made fruitful progress in anomaly detection. However, these multivariate time series anomaly detection algorithms do not take into account the correlation and time dependence between the sequences. In this study, we proposed a new algorithm framework, namely, graph attention network and temporal convolutional network for multivariate time series anomaly detection (GTAD), to address this problem. Specifically, we first utilized temporal convolutional networks, including causal convolution and dilated convolution, to capture temporal dependencies, and then used graph neural networks to obtain correlations between sensors. Finally, we conducted sufficient experiments on three public benchmark datasets, and the results showed that the proposed method outperformed the baseline method, achieving detection results with F1 scores higher than 95% on all datasets.

5.
Biomed Res Int ; 2021: 5561125, 2021.
Article in English | MEDLINE | ID: mdl-34124247

ABSTRACT

Aiming at the current problem of insufficient extraction of small retinal blood vessels, we propose a retinal blood vessel segmentation algorithm that combines supervised learning and unsupervised learning algorithms. In this study, we use a multiscale matched filter with vessel enhancement capability and a U-Net model with a coding and decoding network structure. Three channels are used to extract vessel features separately, and finally, the segmentation results of the three channels are merged. The algorithm proposed in this paper has been verified and evaluated on the DRIVE, STARE, and CHASE_DB1 datasets. The experimental results show that the proposed algorithm can segment small blood vessels better than most other methods. We conclude that our algorithm has reached 0.8745, 0.8903, and 0.8916 on the three datasets in the sensitivity metric, respectively, which is nearly 0.1 higher than other existing methods.


Subject(s)
Algorithms , Databases, Factual , Image Processing, Computer-Assisted , Retinal Vessels/diagnostic imaging , Humans
6.
Sensors (Basel) ; 20(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142866

ABSTRACT

In recent years, convolution operations often consume a lot of time and energy in deep learning algorithms, and convolution is usually used to remove noise or extract the edges of an image. However, under data-intensive conditions, frequent operations of the above algorithms will cause a significant memory/communication burden to the computing system. This paper proposes a circuit based on spin memristor cross array to solve the problems mentioned above. First, a logic switch based on spin memristors is proposed, which realizes the control of the memristor cross array. Secondly, a new type of spin memristor cross array and peripheral circuits is proposed, which realizes the multiplication and addition operation in the convolution operation and significantly alleviates the computational memory bottleneck. At last, the color image filtering and edge extraction simulation are carried out. By calculating the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of the image result, the processing effects of different operators are compared, and the correctness of the circuit is verified.

7.
Sensors (Basel) ; 20(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867246

ABSTRACT

Effective traffic sign recognition algorithms can assist drivers or automatic driving systems in detecting and recognizing traffic signs in real-time. This paper proposes a multiscale recognition method for traffic signs based on the Gaussian Mixture Model (GMM) and Category Quality Focal Loss (CQFL) to enhance recognition speed and recognition accuracy. Specifically, GMM is utilized to cluster the prior anchors, which are in favor of reducing the clustering error. Meanwhile, considering the most common issue in supervised learning (i.e., the imbalance of data set categories), the category proportion factor is introduced into Quality Focal Loss, which is referred to as CQFL. Furthermore, a five-scale recognition network with a prior anchor allocation strategy is designed for small target objects i.e., traffic sign recognition. Combining five existing tricks, the best speed and accuracy tradeoff on our data set (40.1% mAP and 15 FPS on a single 1080Ti GPU), can be achieved. The experimental results demonstrate that the proposed method is superior to the existing mainstream algorithms, in terms of recognition accuracy and recognition speed.

8.
Sensors (Basel) ; 20(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722140

ABSTRACT

Although correlation filter-based trackers (CFTs) have made great achievements on both robustness and accuracy, the performance of trackers can still be improved, because most of the existing trackers use either a sole filter template or fixed features fusion weight to represent a target. Herein, a real-time dual-template CFT for various challenge scenarios is proposed in this work. First, the color histograms, histogram of oriented gradient (HOG), and color naming (CN) features are extracted from the target image patch. Then, the dual-template is utilized based on the target response confidence. Meanwhile, in order to solve the various appearance variations in complicated challenge scenarios, the schemes of discriminative appearance model, multi-peaks target re-detection, and scale adaptive are integrated into the proposed tracker. Furthermore, the problem that the filter model may drift or even corrupt is solved by using high confidence template updating technique. In the experiment, 27 existing competitors, including 16 handcrafted features-based trackers (HFTs) and 11 deep features-based trackers (DFTs), are introduced for the comprehensive contrastive analysis on four benchmark databases. The experimental results demonstrate that the proposed tracker performs favorably against state-of-the-art HFTs and is comparable with the DFTs.

9.
Cogn Neurodyn ; 13(5): 475-488, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31565092

ABSTRACT

Memristor is a nanoscale circuit element with nonvolatile, binary, multilevel and analog states. Its conductance (resistance) plasticity is similar to biological synapses. Information sparse coding is considered as the key mechanism of biological neural systems to process mass complex perception data, which is applied in the fields of signal processing, computer vision and so on. This paper proposes a soft-threshold adaptive sparse coding algorithm named MMN-SLCA based on the memristor, neural network and sparse coding theory. Specifically, the memristor crossbar array is used to realize the dictionary set. And by leveraging its unique vector-matrix operation advantages and biological synaptic characteristic, two key compositions of the sparse coding, namely, pattern matching and lateral neuronal inhibition are realized conveniently and efficiently. Besides, threshold variability further enhances the adaptive ability of the intelligent sparse coding. Furthermore, a hardware implementation framework of the sparse coding algorithm is designed to provide feasible solutions for hardware acceleration, real-time processing and embedded applications. Finally, the application of MMN-SLCA in image super-resolution reconstruction is discussed. Experimental simulations and result analysis verify the effectiveness of the proposed scheme and show its superior potentials in large-scale low-power intelligent information coding and processing.

10.
IEEE Trans Neural Netw Learn Syst ; 26(6): 1202-13, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25069124

ABSTRACT

Cellular nonlinear/neural network (CNN) has been recognized as a powerful massively parallel architecture capable of solving complex engineering problems by performing trillions of analog operations per second. The memristor was theoretically predicted in the late seventies, but it garnered nascent research interest due to the recent much-acclaimed discovery of nanocrossbar memories by engineers at the Hewlett-Packard Laboratory. The memristor is expected to be co-integrated with nanoscale CMOS technology to revolutionize conventional von Neumann as well as neuromorphic computing. In this paper, a compact CNN model based on memristors is presented along with its performance analysis and applications. In the new CNN design, the memristor bridge circuit acts as the synaptic circuit element and substitutes the complex multiplication circuit used in traditional CNN architectures. In addition, the negative differential resistance and nonlinear current-voltage characteristics of the memristor have been leveraged to replace the linear resistor in conventional CNNs. The proposed CNN design has several merits, for example, high density, nonvolatility, and programmability of synaptic weights. The proposed memristor-based CNN design operations for implementing several image processing functions are illustrated through simulation and contrasted with conventional CNNs. Monte-Carlo simulation has been used to demonstrate the behavior of the proposed CNN due to the variations in memristor synaptic weights.


Subject(s)
Nanotechnology/instrumentation , Neural Networks, Computer , Signal Processing, Computer-Assisted/instrumentation , Synapses , Computer Storage Devices , Nanotechnology/methods , Nonlinear Dynamics
11.
ScientificWorldJournal ; 2014: 394828, 2014.
Article in English | MEDLINE | ID: mdl-25202723

ABSTRACT

In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.


Subject(s)
Algorithms , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...