Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 341: 122313, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876722

ABSTRACT

ß-Cyclodextrin (ß-CD) with a cage-like supramolecular structure possesses the hydrophobic internal ring and external hydroxyl groups, which are beneficial for intramolecular interactions known as "host-guest" chemistry. This study presents a ß-CD-based three-functions-in-one and host-guest fire retardant (ßCD-MOF@Schiff base), which incorporates self-crosslinking Schiff base into its cavity and modification of its surface by metal-organic framework (MOF). With the presence of 5 wt% of ßCD-MOF@Schiff base, the LOI value of PLA composites increased to 29 % and showed 15 %, 17 % and 62 % reductions in peak heat release rate (pHRR), total heat release (THR), and the yield of hazard gas carbon monoxide, respectively. The mode action of FR on fire retardation of PLA showed that the FR promoted the char formation with higher thermal stability and graphitization, and modified the decomposition path of PLA. Additionally, the PLA composites exhibited enhanced UV resistance in the UVA and UVB areas with improved UV absorbance and the UPF values improving and doubling. This work develops a new approach to preparing biodegradable FR, which simultaneously endows fire safety and anti-UV properties for PLA.

2.
RSC Adv ; 13(12): 7857-7866, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36909768

ABSTRACT

Since the COVID-19 pandemic, polypropylene melt-blown nonwovens (MBs) have been widely used in disposable medical surgical masks and medical protective clothing, seriously threatening the environment. As a bio-based biodegradable polymer, polylactic acid (PLA) has attracted great attention in fabricating MBs. However, there are still issues with the undesirable spinnability of PLA and the limited filtration and antibacterial performance of PLA MBs. Herein, a high-efficiency, low-resistance, and antibacterial PLA filter is fabricated by melt-blown spinning and electret postprocessing technology. The irradiation technique is used to tune PLA chain structure, improving its spinnability. Further, silica (SiO2) nanoparticles are added to enhance the charge storage stability of PLA MBs. With a constant airflow rate of 32 L min-1, the PLA-based MBs exhibit a high particulate filtration efficiency of 94.8 ± 1.5%, an ultralow pressure drop of 14.1 ± 1.8 Pa, and an adequate bacterial filtration efficiency of 98 ± 1.2%, meeting the medical protective equipment standard. In addition, the zinc oxide (ZnO) masterbatches are doped into the blend and the antibacterial rate of PLA-based MBs against Escherichia coli and Staphylococcus aureus is higher than 99%. This successful preparation and modification method paves the way for the large-scale production of PLA MBs as promising candidates for high-efficacy and antibacterial filters.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122178, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36527965

ABSTRACT

Developing novel, alternative ways to recycle PET waste, which has an important influence on reduction of landfilling and CO2 emissions, has always been a research hot spot for industry and academy. In this work, PET waste was adopted as precursor for the preparation of nitrogen-doped Carbon Dots (NCDs). Firstly, PET oligomers were obtained by alcoholysis of PET waste with ethylene glycol. Then, the mixture without isolation and purification as well as pyromellitic acid dianhydride and urea were adopted as precursors for the preparation of NCDs by solvothermal method with tetrahydrofuran (THF) as solvent. The as-prepared NCDs has a spherical structure with an average particle size of 2.3 nm. What is more, NCDs exhibit excitation-independent emission properties, the largest excitation peak and emission peak of NCDs located in 360 nm and 470 nm, and the fluorescence quantum yield is 48.16 %. In term of application, NCDs are dispersed in PMMA and loaded on 365 nm and 430 nm LED chips to obtain LED devices emitting yellow light ((0.55, 0.44), 2018 K) and warm white light ((0.37, 0.31), 3783 K), respectively. In addition, NCDs could be adopted as fluorescent probe for the construction of sensor for water in organic solvents based on dynamic quenching of NCDs, and the limit of detection (LOD) is 0.00001 %.


Subject(s)
Quantum Dots , Water , Nitrogen/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Limit of Detection , Solvents
4.
ACS Omega ; 7(50): 46277-46287, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570273

ABSTRACT

In this study, an antidroplet flame retardant system based on FRPET (phosphorus-containing copolyester) is constructed with DOPO-POSS (polyhedral oligomeric silsesquioxane containing DOPO) as an additive flame retardant. It is demonstrated that DOPO-POSS has good dispersibility at a lower amount. When the amount of DOPO-POSS is 9 wt %, the residual char of DOPO-POSS/FRPET at 700 °C increases to 23.56 from 18.16% of FRPET, and the maximum thermal weight loss rate also reduces. What is more is that the limiting oxygen index increases to 33 from 26% of FRPET. The flame burning time is shortened to 4.95 from 20.8 s, the phenomenon of self-extinguishing of the fire occurs, and the vertical combustion level is increased from V-2 to V-0. Compared with FRPET, the peak of the heat release rate decreases by 66.0%, the total heat release decreases by 32.4%, the flame retardancy index (FRI) reaches an excellent value, and the condensed-phase products significantly improve. The Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX), thermogravimetric-FTIR (TG-FTIR), and pyrolysis-gas chromatograph/mass spectrometry (Py-GC/MS) results indicate that DOPO-POSS contributes to the formation of char layers and decomposes to generate free radicals with a quenching effect. In a word, DOPO-POSS is an effective radical trapper and charring agent for PET and exerts a flame retardancy effect in gaseous and condensed phases simultaneously.

5.
ACS Omega ; 7(26): 22149-22160, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811907

ABSTRACT

Polylactic acid (PLA) is considered to be the material with great application potential in the 21st century which has aroused wide research interest. However, PLA is a highly flammable material and exhibits low heat distortion temperature, which greatly limits its application in many fields. In this work, aluminum diethyl phosphinate (ADP) and poly (d-lactic acid) (PDLA) are used to improve fire retardancy and heat resistance of poly (l-lactic acid) (PLLA). PLLA/PDLA with the presence of 15 wt % ADP exhibited the limiting oxygen index (LOI) value at 26%, and the peak heat release rate (pHRR) and total heat release decreased, respectively, by 14.03 and 24.42% from 500 to 429 kW/m2 and 86 to 65 MJ/m2. The melt dripping phenomenon was suppressed obviously. The addition of ADP realized the flame-retardant effect from both the condensed phase and gas phase. Moreover, the results showed that the addition of ADP promoted the formation of stereo crystals and increased the crystallization temperature to 175 °C. The heat distortion temperature (HDT) of the PLLA/PDLA sample with 15 wt % ADP can be as high as 170.4 °C, which marks significant improvement in the heat resistance of PLA. The mechanical property test results showed that ADP has little effect on the mechanical properties of the composites. This work opens a window to realize the heat-resistant and anti-dripping fire-retardant PLA.

6.
RSC Adv ; 10(70): 42890-42896, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-35514938

ABSTRACT

Biodegradable three-dimensional crimped fibers were prepared by the side-by-side composite spinning of poly(lactic acid) (PLA) and low-melting point PLA (LM-PLA). The structural variation of the PLA/LM-PLA composite fibers during dry and wet heat treatment was explored systematically. It is shown that crystallization and disorientation were two key factors for the formation of the three-dimensional crimped structure of PLA/LM-PLA side-by-side composite fibers (SSCF). The wet heat-treated fiber has better crimp performance and fluffiness, and the crimp number, crimp ratio and crimp elasticity ratio of the treated PLA/LM-PLA SSCF with good comprehensive properties are 21 per 25 mm, 31.9% and 81.6%, which are similar to those of industrialized PET/PTT three-dimensional crimped fibers. The results of this study shed light on the development of novel three-dimensional crimped fibers with biodegradability.

7.
Polymers (Basel) ; 10(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30961279

ABSTRACT

Poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blend as-spun fibers (50/50, wt.%) were prepared by melt spinning. Structure mediation under temperature and stress and properties of poly(l-lactic acid)/poly(d-lactic acid)(PLLA/PDLA) as-spun fibers were investigated by wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC). The results show that highly oriented stereocomplex (SC) crystals can be formed in PLLA/PDLA blend fibers drawn at 60 °C and annealed at 200 °C. However, at drawn temperature of 80 °C, only lower oriented SC crystals can be formed. For PLLA/PDLA blend fibers drawn twice at 60 °C (PLLA/PDLA-60-2), the crystallinity of SC crystals increases with annealing temperature in the range of 200 to 215 °C, while the degree of orientation decreases slightly. When the annealing temperature is 210 °C, the crystallinity and orientation of SC crystals in PLLA/PDLA-60-2 fibers reach 51% and -0.39, respectively. Moreover, PLLA/PDLA-60-2-210 fibers exhibit excellent heat-resistant property even at 200 °C. The results indicate that the oriented PLLA/PDLA blend fibers with high SC crystals content can be regulated in a short time.

SELECTION OF CITATIONS
SEARCH DETAIL
...