Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 104(6): 1662-1667, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32324096

ABSTRACT

Sharp eyespot, caused by Rhizoctonia cerealis, has become one of the most severe diseases affecting global wheat production in recent decades. Quick and efficient screening methods are required to accelerate the development of cultivars for sharp eyespot resistance in wheat breeding. Here, a two-step colonized wheat kernels (TSCWK) method for the inoculation and classification of sharp eyespot resistance in seedlings was established in a greenhouse. After preliminary verification of the reliability of the method in two replicates, 196 wheat cultivars were assessed for sharp eyespot resistance, and significant correlations were identified among the four replicates (r = 0.78 to 0.84; P < 0.01). Furthermore, the 196 cultivars were scored for sharp eyespot resistance at the milk-ripe stage using traditional toothpick inoculation in the field. Correlation and linear regression analysis showed that the application of this approach at the seedling stage showed good consistency with the traditional field method. Moreover, the scoring of 442 cultivars using the TSCWK method indicated that most cultivars from the Huanghuai valley were susceptible to R. cerealis, suggesting an urgent need to improve sharp eyespot resistance in this region. Additionally, the relative resistance index of sharp eyespot decreased in the surveyed cultivars of the region with time. This study offers a rapid and effective approach for the identification of wheat sharp eyespot resistance and provides valuable germplasm for improving sharp eyespot resistance in wheat breeding.


Subject(s)
Seedlings , Triticum , Plant Diseases , Reproducibility of Results , Rhizoctonia
2.
J Genet ; 94(3): 453-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26440084

ABSTRACT

To investigate allelic variation of Myb10-1 genes in Chinese wheat and to examine its association with germination level in wheat, a total of 582 Chinese bread wheat cultivars and 110 Aegilops tauschii accessions were used to identify allelic variations of three Myb10-1 genes. Identification results indicated that there is a novel Tamyb10-B1 allele, designated Tamyb10-B1c, in the five Chinese landraces. The Tamyb10-B1c possibly has a large deletion including Tamyb10-B1 gene. There are three novel Tamyb10-D1 alleles (Aetmyb10-D1c, Aetmyb10-D1d and Aetmyb10-D1e) that were discovered in Aegilops tauschii. Of them, Aetmyb10-D1c allele possessed a 104-bp deletion and this resulted in a frame shift in the open reading frame of the Aetmyb10-D1 gene. AETMYB10-D1d and AETMYB10-D1e proteins possessed three and two different amino acids when compared with TAMYB10-D1b protein, respectively. Association of Tamyb10-1 allelic variation with grain germination level indicated that all five allelic combinations with red grains showed a significantly higher GP (germination percentage) and GI (germination index) values than those of white-grained Tamyb10-A1a/Tamyb10-B1a/Tamyb10-D1a genotype after storing it for one year. Moreover, the Tamyb10-A1b/Tamyb10-B1c/Tamyb10-D1b genotype possesses the significantly highest GP and GI among the six different Tamyb10-1 combinations. This study could provide useful information for wheat breeding programme in terms of grain colour and germination level.


Subject(s)
Genes, Plant , Germination/genetics , Pigmentation/genetics , Poaceae/genetics , Seeds/genetics , Triticum/genetics , Alleles , Bread , Genetic Markers , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...