Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 23(1): 542, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37924000

ABSTRACT

BACKGROUND: Henan is the province with the greatest wheat production in China. Although more than 100 cultivars are used for production, many cultivars are still insufficient in quality, disease resistance, adaptability and yield potential. To overcome these limitations, it is necessary to constantly breed new cultivars to maintain the continuous and stable growth of wheat yield and quality. To improve breeding efficiency, it is important to evaluate the genetic diversity and population genetic structure of its cultivars. However, there are no such reports from Henan Province. Therefore, in this study, single nucleotide polymorphism (SNP) markers were used to study the population genetic structure and genetic diversity of 243 wheat cultivars included in a comparative test of wheat varieties in Henan Province, aiming to provide a reference for the utilization of backbone parents and the selection of hybrid combinations in the genetic improvement of wheat cultivars. RESULTS: In this study, 243 wheat cultivars from Henan Province of China were genotyped by the Affymetrix Axiom Wheat660K SNP chip, and 21 characteristics were investigated. The cultivars were divided into ten subgroups; each subgroup had distinct characteristics and unique utilization value. Furthermore, based on principal component analysis, Zhoumai cultivars were the main hybrid parents, followed by Aikang 58, high-quality cultivars, and Shandong cultivars. Genetic diversity analysis showed that 61.3% of SNPs had a high degree of genetic differentiation, whereas 33.4% showed a moderate degree. The nucleotide diversity of subgenome B was relatively high, with an average π value of 3.91E-5; the nucleotide diversity of subgenome D was the lowest, with an average π value of 2.44E-5. CONCLUSION: The parents used in wheat cross-breeding in Henan Province are similar, with a relatively homogeneous genetic background and low genetic diversity. These results will not only contribute to the objective evaluation and utilization of the tested cultivars but also provide insights into the current conditions and existing challenges of wheat cultivar breeding in Henan Province, thereby facilitating the scientific formulation of breeding objectives and strategies to improve breeding efficiency.


Subject(s)
Polymorphism, Single Nucleotide , Triticum , Triticum/genetics , Polymorphism, Single Nucleotide/genetics , Plant Breeding/methods , China , Nucleotides , Genetic Variation
2.
Mol Breed ; 43(6): 48, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37313222

ABSTRACT

Leaf color-related genes play key roles in chloroplast development and photosynthetic pigment biosynthesis and affect photosynthetic efficiency and grain yield in crops. In this study, a recessive homozygous individual displaying yellow leaf color (yl1) was identified in the progeny population derived from a cross between wheat cultivars Xingmai1 (XM1) and Yunong3114 (YN3114). Phenotypic identification showed that yl1 exhibited the yellow character state over the entire growth period. Compared with XM1, yl1 plants had significantly lower chlorophyll content and net photosynthetic rate, and similar results were found between the green-type lines and yellow-type lines in the BC2F3 XM1 × yl1 population. Gene mapping via the bulked segregant exome capture sequencing (BSE-seq) method showed that the target gene TaYL1 was located within the region of 582,556,971-600,837,326 bp on chromosome 7D. Further analysis by RNA-seq suggested TraesCS7D02G469200 as a candidate gene for yellow leaf color in common wheat, which encodes a protein containing the AP2 domain. Moreover, comparative transcriptome profiling revealed that most differentially expressed genes (DEGs) were enriched in chlorophyll metabolism and photosynthesis pathways. Together, these results indicate that TaYL1 potentially affects chlorophyll synthesis and photosynthesis. This study further elucidates the biological mechanism of chlorophyll synthesis, metabolism, and photosynthesis in wheat and provides a theoretical basis for high photosynthetic efficiency in wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01395-z.

3.
Plant Biotechnol J ; 21(6): 1229-1239, 2023 06.
Article in English | MEDLINE | ID: mdl-36794449

ABSTRACT

Wheat fixes CO2 by photosynthesis into kernels to nourish humankind. Improving the photosynthesis rate is a major driving force in assimilating atmospheric CO2 and guaranteeing food supply for human beings. Strategies for achieving the above goal need to be improved. Here, we report the cloning and mechanism of CO2 ASSIMILATION RATE AND KERNEL-ENHANCED 1 (CAKE1) from durum wheat (Triticum turgidum L. var. durum). The cake1 mutant displayed a lower photosynthesis rate with smaller grains. Genetic studies identified CAKE1 as HSP90.2-B, encoding cytosolic molecular chaperone folding nascent preproteins. The disturbance of HSP90.2 decreased leaf photosynthesis rate, kernel weight (KW) and yield. Nevertheless, HSP90.2 over-expression increased KW. HSP90.2 recruited and was essential for the chloroplast localization of nuclear-encoded photosynthesis units, for example PsbO. Actin microfilaments docked on the chloroplast surface interacted with HSP90.2 as a subcellular track towards chloroplasts. A natural variation in the hexaploid wheat HSP90.2-B promoter increased its transcription activity, enhanced photosynthesis rate and improved KW and yield. Our study illustrated an HSP90.2-Actin complex sorting client preproteins towards chloroplasts to promote CO2 assimilation and crop production. The beneficial haplotype of Hsp90.2 is rare in modern varieties and could be an excellent molecular switch promoting photosynthesis rate to increase yield in future elite wheat varieties.


Subject(s)
Carbon Dioxide , Triticum , Humans , Triticum/genetics , Photosynthesis/genetics , Plant Leaves , Edible Grain
4.
Plant Biotechnol J ; 21(1): 122-135, 2023 01.
Article in English | MEDLINE | ID: mdl-36128872

ABSTRACT

Tiller angle is one of the most important agronomic traits and one key factor for wheat ideal plant architecture, which can both increase photosynthetic efficiency and greatly enhance grain yield. Here, a deacetylase HST1-like (TaHST1L) gene controlling wheat tiller angle was identified by the combination of a genome-wide association study (GWAS) and bulked segregant analysis (BSA). Ethyl methane sulfonate (EMS)-mutagenized tetraploid wheat lines with the premature stop codon of TaHST1L exhibited significantly smaller tiller angles than the wild type. TaHST1L-overexpressing (OE) plants exhibited significantly larger tiller angles and increased tiller numbers in both winter and spring wheat, while TaHST1L-silenced RNAi plants displayed significantly smaller tiller angles and decreased tiller numbers. Moreover, TaHST1L strongly interacted with TaIAA17 and inhibited its expression at the protein level, and thus possibly improved the content of endogenous auxin in the basal tissue of tillers. The transcriptomics and metabolomics results indicated that TaHST1L might change plant architecture by mediating auxin signal transduction and regulating endogenous auxin levels. In addition, a 242-bp insertion/deletion (InDel) in the TaHST1L-A1 promoter altered transcriptional activity and TaHST1L-A1b allele with the 242-bp insertion widened the tiller angle of TaHST1L-OE transgenic rice plants. Wheat varieties with TaHST1L-A1b allele possessed the increased tiller angle and grain yield. Further analysis in wheat and its progenitors indicated that the 242-bp InDel possibly originated from wild emmer and was strongly domesticated in the current varieties. Therefore, TaHST1L involved in the auxin signalling pathway showed the big potential to improve wheat yield by controlling plant architecture.


Subject(s)
Indoleacetic Acids , Oryza , Indoleacetic Acids/metabolism , Triticum/genetics , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Alleles , Edible Grain/genetics , Oryza/genetics
5.
Genomics Proteomics Bioinformatics ; 20(4): 688-701, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33581340

ABSTRACT

As a novel post-translational modification (PTM), lysine 2-hydroxyisobutyrylation (Khib) is considered to regulate gene transcriptional activities in eukaryotic cells; however, the functions of Khib-modified proteins in plants remain unknown. Here, we report that Khib is an evolutionarily-conserved PTM in wheat and its progenitors. A total of 3348 Khib sites on 1074 proteins are identified in common wheat (Triticum aestivum L.) by using affinity purification and mass spectroscopy of 2-hydroxyisobutyrylome. Bioinformatic data indicate that Khib-modified proteins participate in a wide variety of biological and metabolic pathways. Immunoprecipitation confirms that Khib-modified proteins are present endogenously. A comparison of Khib and other main PTMs shows that Khib-modified proteins are simultaneously modified by multiple PTMs. Using mutagenesis experiments and co-immunoprecipitation assays, we demonstrate that Khib on K206 of phosphoglycerate kinase (PGK) is a key regulatory modification for its enzymatic activity, and mutation on K206 affects the interactions of PGK with its substrates. Furthermore, Khib modification of low-molecular-weight proteins is a response to the deacetylase inhibitors nicotinamide and trichostatin. This study provides evidence to promote our current understanding of Khib in wheat plants, including the cooperation between Khib and its metabolic regulation.


Subject(s)
Histones , Triticum , Triticum/genetics , Histones/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Mass Spectrometry
6.
Plant Dis ; 104(7): 2005-2013, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32441580

ABSTRACT

Black point is a common disease in wheat all over the world. The disease could downgrade wheat quality and cause human health problems. In this study, 406 wheat cultivars were used to investigate black point resistance. In the field tests, 20, 65.5, and 14.5% of the tested cultivars were resistant, moderately resistant, and susceptible, respectively, suggesting that improving black point resistance is necessary in Chinese wheat breeding. A genome-wide association study (GWAS) identified 386 single-nucleotide polymorphisms (SNPs) significantly related to black point resistance in the tested wheat cultivars, and they were located on all chromosomes. Linkage mapping in a biparental population identified three quantitative trait loci (QTL) for black point resistance-QBP.hau-3A, QBP.hau-6D, and QBP.hau-7D-with 6.76, 7.79, and 8.84% phenotypic variation explained, respectively. Based on both the GWAS and linkage analyses, QBP.hau-6D covered six significant SNPs from the GWAS, and the position of these SNPs indicated that this QTL is a new locus for black point resistance. This study provides valuable germplasm for breeding wheat cultivars with resistance to black point and information for further understanding of molecular and genetic basis of black point resistance.


Subject(s)
Genome-Wide Association Study , Triticum/genetics , Chromosome Mapping , Disease Resistance , Humans , Plant Diseases
7.
Plant Dis ; 104(6): 1662-1667, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32324096

ABSTRACT

Sharp eyespot, caused by Rhizoctonia cerealis, has become one of the most severe diseases affecting global wheat production in recent decades. Quick and efficient screening methods are required to accelerate the development of cultivars for sharp eyespot resistance in wheat breeding. Here, a two-step colonized wheat kernels (TSCWK) method for the inoculation and classification of sharp eyespot resistance in seedlings was established in a greenhouse. After preliminary verification of the reliability of the method in two replicates, 196 wheat cultivars were assessed for sharp eyespot resistance, and significant correlations were identified among the four replicates (r = 0.78 to 0.84; P < 0.01). Furthermore, the 196 cultivars were scored for sharp eyespot resistance at the milk-ripe stage using traditional toothpick inoculation in the field. Correlation and linear regression analysis showed that the application of this approach at the seedling stage showed good consistency with the traditional field method. Moreover, the scoring of 442 cultivars using the TSCWK method indicated that most cultivars from the Huanghuai valley were susceptible to R. cerealis, suggesting an urgent need to improve sharp eyespot resistance in this region. Additionally, the relative resistance index of sharp eyespot decreased in the surveyed cultivars of the region with time. This study offers a rapid and effective approach for the identification of wheat sharp eyespot resistance and provides valuable germplasm for improving sharp eyespot resistance in wheat breeding.


Subject(s)
Seedlings , Triticum , Plant Diseases , Reproducibility of Results , Rhizoctonia
8.
Plant Biotechnol J ; 18(6): 1354-1360, 2020 06.
Article in English | MEDLINE | ID: mdl-32065714

ABSTRACT

The rapid development and application of molecular marker assays have facilitated genomic selection and genome-wide linkage and association studies in wheat breeding. Although PCR-based markers (e.g. simple sequence repeats and functional markers) and genotyping by sequencing have contributed greatly to gene discovery and marker-assisted selection, the release of a more accurate and complete bread wheat reference genome has resulted in the design of single-nucleotide polymorphism (SNP) arrays based on different densities or application targets. Here, we evaluated seven types of wheat SNP arrays in terms of their SNP number, distribution, density, associated genes, heterozygosity and application. The results suggested that the Wheat 660K SNP array contained the highest percentage (99.05%) of genome-specific SNPs with reliable physical positions. SNP density analysis indicated that the SNPs were almost evenly distributed across the whole genome. In addition, 229 266 SNPs in the Wheat 660K SNP array were located in 66 834 annotated gene or promoter intervals. The annotated genes revealed by the Wheat 660K SNP array almost covered all genes revealed by the Wheat 35K (97.44%), 55K (99.73%), 90K (86.9%) and 820K (85.3%) SNP arrays. Therefore, the Wheat 660K SNP array could act as a substitute for other 6 arrays and shows promise for a wide range of possible applications. In summary, the Wheat 660K SNP array is reliable and cost-effective and may be the best choice for targeted genotyping and marker-assisted selection in wheat genetic improvement.


Subject(s)
Polyploidy , Triticum , Breeding , Genetic Linkage , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Triticum/genetics
9.
Sci Rep ; 9(1): 2702, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804359

ABSTRACT

Using Wheat 90 K SNP assay, kernel-related traits of Chinese bread wheat were used to perform association mapping in 14 environments by GWAS. Results indicated that 996 and 953 of 4417 and 3172 significant SNPs for kernel length and thousand-kernel weight were located on the chromosome 7B. Haplotype analysis of these SNPs on 7B generated the block containing the predicted TaGW8-B1 gene. TaGW8-B1 gene was further cloned by sequencing in bread wheat and a 276-bp InDel was found in the first intron. TaGW8-B1 without and with the 276-bp InDel were designated as TaGW8-B1a and TaGW8-B1b, respectively. Analysis of agronomic traits indicated that cultivars with TaGW8-B1a possessed significantly wider kernel width, significantly more kernel number per spike, longer kernel length, higher thousand-kernel weight and more spikelet number per spike than cultivars with TaGW8-B1b. Furthermore, cultivars with TaGW8-B1a possessed significantly higher yield than cultivars with TaGW8-B1b. Therefore, TaGW8-B1a was considered as a potentially superior allele. Meanwhile, TaGW8-B1a possessed a significantly higher expression level than TaGW8-B1b in mature seeds by qRT-PCR. It possibly suggested that the high expression of TaGW8-B1 was positively associated with kernel size in bread wheat. Distribution of TaGW8-B1 allele indicated that TaGW8-B1a has been positively selected in Chinese wheat.


Subject(s)
Genome-Wide Association Study/methods , Triticum/genetics , Alleles , Haplotypes/genetics , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci/genetics
10.
BMC Plant Biol ; 17(1): 244, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258440

ABSTRACT

BACKGROUND: During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). RESULTS: In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which were validated by qRT-PCR, showed a high correlation with the RNA-seq value. CONCLUSIONS: This study provides new insights into the role of the transcriptome in embryogenic callus formation in wheat, and will serve as a valuable resource for further studies addressing embryogenic callus formation in plants.


Subject(s)
Plant Proteins/genetics , Transcriptome/genetics , Triticum/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Mesophyll Cells/metabolism , Plant Proteins/metabolism , Seeds/embryology , Seeds/genetics , Triticum/embryology
11.
Plant Biotechnol J ; 15(8): 953-969, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28055148

ABSTRACT

Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield-related traits in series of genome-wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high-quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length-related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height-related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield-related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length- and plant height-related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield-related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield-related traits and valuable genetic loci for marker-assisted selection in Chinese wheat breeding programme.


Subject(s)
Genome-Wide Association Study/methods , Triticum/genetics , Alleles , China , Chromosomes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
12.
Front Plant Sci ; 7: 1302, 2016.
Article in English | MEDLINE | ID: mdl-27625667

ABSTRACT

Feasible and efficient tissue culture plays an important role in plant genetic engineering. Wheat (Triticum aestivum L.) immature embryos (IMEs) are preferred for tissue culture to mature embryos (MEs) because IMEs easily generate embryogenic callus, producing large number of plants. The molecular mechanisms of regulation and the biological pathways involved in embryogenic callus formation in wheat remain unclear. Here, microRNAs (miRNAs) potentially involved in embryogenic callus formation and somatic embryogenesis were identified through deep sequencing of small RNAs (sRNAs) and analyzed with bioinformatics tools. Six sRNA libraries derived from calli of IMEs and MEs after 3, 6, or 15 d of culture (DC) were constructed and sequenced. A total of 85 known miRNAs were identified, of which 30, 33, and 18 were differentially expressed (P < 0.05) between the IME and ME libraries at 3, 6, and 15 DC, respectively. Additionally, 171 novel and 41 candidate miRNAs were also identified, of the novel miRNA, 69, 67, and 37 were differentially expressed (P < 0.05) between the two types of libraries at 3, 6, and 15 DC, respectively. The expression patterns of eight known and eight novel miRNAs were validated using quantitative real-time polymerase chain reaction. Gene ontology annotation of differentially expressed miRNA targets provided information regarding the underlying molecular functions, biological processes, and cellular components involved in embryogenic callus development. Functional miRNAs, such as miR156, miR164, miR1432, miR398, and miR397, differentially expressed in IMEs and MEs might be related to embryogenic callus formation and somatic embryogenesis. This study suggests that miRNA plays an important role in embryogenic callus formation and somatic embryogenesis in wheat, and our data provide a useful resource for further research.

13.
Front Plant Sci ; 7: 1193, 2016.
Article in English | MEDLINE | ID: mdl-27551288

ABSTRACT

The transcriptomes of bread wheat Yunong 201 and its ethyl methanesulfonate derivative Yunong 3114 were obtained by next-sequencing technology. Single nucleotide variants (SNVs) in the wheat strains were explored and compared. A total of 5907 and 6287 non-synonymous SNVs were acquired for Yunong 201 and 3114, respectively. A total of 4021 genes with SNVs were obtained. The genes that underwent non-synonymous SNVs were significantly involved in ATP binding, protein phosphorylation, and cellular protein metabolic process. The heat map analysis also indicated that most of these mutant genes were significantly differentially expressed at different developmental stages. The SNVs in these genes possibly contribute to the longer kernel length of Yunong 3114. Our data provide useful information on wheat transcriptome for future studies on wheat functional genomics. This study could also help in illustrating the gene functions of the non-synonymous SNVs of Yunong 201 and 3114.

14.
Gene ; 575(2 Pt 1): 285-93, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26342963

ABSTRACT

Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics.


Subject(s)
Gene Expression Regulation, Plant , Mutation , Plant Proteins/biosynthesis , Stress, Physiological , Transcriptome , Triticum/metabolism , China , Ethyl Methanesulfonate/toxicity , Mutagenesis/drug effects , Plant Proteins/genetics , Triticum/genetics
15.
PLoS One ; 10(9): e0137773, 2015.
Article in English | MEDLINE | ID: mdl-26372220

ABSTRACT

Wheat is one of the main food sources worldwide; large amount studies have been conducted to improve wheat production. MicroRNAs (miRNAs) with about 20-30 nucleotide are a class of regulatory small RNAs (sRNAs), which could regulate gene expression through sequence-specific base pairing with target mRNAs, playing important roles in plant growth. An ideal plant architecture (IPA) is crucial to enhance yield in bread wheat. In this study, the high-yield wheat strain Yunong 3114 was EMS-mutagenesis from the wild-type strain Yunong 201, exhibiting a preferable plant structure compared with the wild-type strain. We constructed small RNA and degradome libraries from Yunong 201 and Yunong 3114, and performed small RNA sequencing of these libraries in order identify miRNAs and their targets related to IPA in wheat. Totally, we identified 488 known and 837 novel miRNAs from Yunong 3114 and 391 known and 533 novel miRNAs from Yunong 201. The number of miRNAs in the mutant increased. A total of 37 known and 432 putative novel miRNAs were specifically expressed in the mutant strain; furthermore, 23 known and 159 putative novel miRNAs were specifically expressed in the wild-type strain. A total of 150 known and 100 novel miRNAs were differentially expressed between mutant and wild-type strains. Among these differentially expressed novel miRNAs, 4 and 8 predict novel miRNAs were evidenced by degradome sequencing and showed up-regulated and down-regulated expressions in the mutant strain Yunong 3114, respectively. Targeted gene annotation and previous results indicated that this set of miRNAs is related to plant structure. Our results further suggested that miRNAs may be necessary to obtain an optimal wheat structure.


Subject(s)
Computational Biology , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Mutation , Sequence Analysis, RNA , Triticum/growth & development , Triticum/genetics , MicroRNAs/chemistry
16.
J Sci Food Agric ; 93(10): 2541-8, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23519461

ABSTRACT

BACKGROUND: Grain texture is one of the most important characteristics of bread wheat and has a significant influence on end-use qualities. RESULTS: Forty-three Chinese cultivars were tested under three environments and used to characterise kernel hardness, Puroindoline-D1 alleles and Alveograph and Mixolab parameters. The results indicated that SKCS hardness was positively correlated with Alveograph tenacity and P/L and Mixolab protein weakening (C2) and water absorption and negatively correlated with Mixolab starch gelatinisation (C3), amylasic activity (C4) and starch gelling (C5). Variance analysis showed that Puroindoline-D1 had a significant impact on SKCS hardness and most Alveograph and Mixolab parameters. Furthermore, among three Puroindoline-D1 genotypes, PINA-null/Pinb-D1a possessed the highest SKCS hardness, Alveograph tenacity and W and Mixolab stability and water absorption but the lowest Alveograph extensibility and G and Mixolab C3, C4 and C5. Pina-D1a/Pinb-D1a had the lowest SKCS hardness, Alveograph tenacity and W and Mixolab C2, water absorption and stability but the highest Alveograph extensibility and G and Mixolab C3, C4 and C5. Pina-D1a/Pinb-D1b possessed the lowest Mixolab C2 - C1, C3 - C2, C4 - C3 and C5 - C4. CONCLUSION: Pina-D1a/Pinb-D1a was softer and had lower tenacity and water absorption. PINA-null/Pinb-D1a was harder and had higher tenacity and water absorption. Pina-D1a/Pinb-D1b had lower difference values among Mixolab parameters.


Subject(s)
Bread , Genes, Plant , Genotype , Hardness , Plant Proteins/genetics , Seeds/metabolism , Triticum/genetics , Alleles , Amylases/metabolism , China , Diet , Gels , Humans , Plant Proteins/metabolism , Starch/chemistry , Triticum/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...