Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38592730

ABSTRACT

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Subject(s)
Photothermal Therapy , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Animals , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Immunotherapy , Phototherapy/methods
2.
Prenat Diagn ; 44(2): 247-250, 2024 02.
Article in English | MEDLINE | ID: mdl-37596871

ABSTRACT

Heterozygous loss-of-function variants in the PKD1 gene are commonly associated with adult-onset autosomal dominant polycystic kidney disease (ADPKD), where the formation of renal cysts depends on the dosage of the PKD1 gene. Biallelic null PKD1 variants are not viable, but biallelic hypomorphic variants could lead to early-onset PKD. We report a non-consanguineous Chinese family with recurrent fetal polycystic kidney and negative findings in the coding region of the PKHD1 gene or chromosomal microarray analysis. Trio exome analysis revealed compound heterozygous variants of uncertain significance in the PKD1 gene in the index pregnancy: a novel paternally inherited c.7863 + 5G > C and a maternally inherited c.9739C > T, p.(Arg3247Cys). Segregation analysis through long-range PCR followed by nested PCR and Sanger sequencing confirmed another affected fetus had both variants, while the other two normal siblings and the parents carried either variant. Thus, these two variants, both of which were hypomorphic as opposed to null variants, co-segregated with prenatal onset polycystic kidney disease in this family. Functional studies are needed to further determine the impact of these two variants. Our findings highlight the biallelic inheritance of hypomorphic PKD1 variants causing prenatal onset polycystic kidney disease, which provides a better understanding of phenotype-genotype correlation and valuable information for reproductive counseling.


Subject(s)
Polycystic Kidney, Autosomal Dominant , TRPP Cation Channels , Adult , Female , Pregnancy , Humans , TRPP Cation Channels/genetics , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Prenatal Diagnosis , Genetic Association Studies , Exome , Mutation
3.
Small Methods ; 8(1): e2300829, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728191

ABSTRACT

N-type ZrNiSn-based alloys reach a record thermoelectric figure of merit zT ≈1.2 by increasing the carrier concentration to 4-5 × 1020 cm-3 . In this work, It is reported that a comparable zT can also be realized in trace Ru-doped ZrNiSn-based alloy at even lower temperature by decreasing the carrier concentration. Compared to the previously reported Co doping, the doping of Ru results in a more effective reduction in carrier concentration, and thus higher Seebeck coefficient, lower electronic thermal conductivity, and enhanced thermoelectric performance. The electronic specific heat coefficient of the ZrNi1- x Rux Sn sample remains constant with increasing Ru content, indicating no obvious change in the density of states effective mass. Theoretical calculations show that the doping of Ru has negligible effect on the bottom of conduction band. The lattice thermal conductivity is further reduced by alloying Ti and Hf at the Zr site, and the bipolar diffusion is suppressed by doping of 0.5 at.% Sb. As a result, Ti0.25 Zr0.5 Hf0.25 Ni0.99 Ru0.01 Sn0.995 Sb0.005 reaches not only a zT value of 1.1 at 773 K but also a record average zT value of 0.8 in 300 to 873 K, demonstrating the effectiveness of trace Ru doping on boosting the thermoelectric performance of ZrNiSn-based alloys.

4.
J Assist Reprod Genet ; 41(1): 171-184, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102500

ABSTRACT

PURPOSE: The goal of this study is to determine whether any balanced translocation (BT) had been missed by previous karyotyping in patients with unexplained recurrent pregnancy loss (uRPL). METHODS: This case series included 48 uRPL-affected couples with normal karyotypes. The embryos from these couples have all undergone preimplantation testing for aneuploidies (PGT-A). Based on the PGT-A's results, 48 couples could be categorized into two groups: 17 couples whose multiple embryos were detected with similar structural variations (SVs, segmental/complete) and 31 couples without such findings but who did not develop any euploid embryo despite at least three high-quality blastocysts being tested. The peripheral blood sample of each partner was then collected for mate-pair sequencing (MPseq) to determine whether any of them were BT carriers. RESULTS: MPseq analyses identified 13 BTs in the 17 couples whose multiple embryos had similar SVs detected (13/17, 76.47%) and three BTs in the 31 couples without euploid embryo obtained (3/31, 9.7%). Among the 16 MPseq-identified BTs, six were missed due to the limited resolution of G-banding karyotyping analysis, and the rest were mostly owing to the similar banding patterns and/or comparable sizes shared by the two segments exchanged. CONCLUSION: A normal karyotype does not eliminate the possibility of carrying BT for couples with uRPL. The use of PGT-A allows us to perceive the "carrier couples" missed by karyotyping analysis, providing an increased risk of finding cryptic BTs if similar SVs are always detected on two chromosomes among multiple embryos. Nonetheless, certain carriers with translocated segments of sub-resolution may still go unnoticed.


Subject(s)
Abortion, Habitual , Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Translocation, Genetic/genetics , Aneuploidy , Abortion, Habitual/genetics , Blastocyst , Genetic Testing/methods , Fertilization in Vitro/methods
5.
Front Cell Dev Biol ; 11: 1209320, 2023.
Article in English | MEDLINE | ID: mdl-38020907

ABSTRACT

Background: Currently, the mechanism(s) underlying corticogenesis is still under characterization. Methods: We curated the most comprehensive single-cell RNA-seq (scRNA-seq) datasets from mouse and human fetal cortexes for data analysis and confirmed the findings with co-immunostaining experiments. Results: By analyzing the developmental trajectories with scRNA-seq datasets in mice, we identified a specific developmental sub-path contributed by a cell-population expressing both deep- and upper-layer neurons (DLNs and ULNs) specific markers, which occurred on E13.5 but was absent in adults. In this cell-population, the percentages of cells expressing DLN and ULN markers decreased and increased, respectively, during the development suggesting direct neuronal transition (namely D-T-U). Whilst genes significantly highly/uniquely expressed in D-T-U cell population were significantly enriched in PTN/MDK signaling pathways related to cell migration. Both findings were further confirmed by co-immunostaining with DLNs, ULNs and D-T-U specific markers across different timepoints. Furthermore, six genes (co-expressed with D-T-U specific markers in mice) showing a potential opposite temporal expression between human and mouse during fetal cortical development were associated with neuronal migration and cognitive functions. In adult prefrontal cortexes (PFC), D-T-U specific genes were expressed in neurons from different layers between humans and mice. Conclusion: Our study characterizes a specific cell population D-T-U showing direct DLNs to ULNs neuronal transition and migration during fetal cortical development in mice. It is potentially associated with the difference of cortical development in humans and mice.

6.
Genes (Basel) ; 14(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37510263

ABSTRACT

Submission of a non-biological parent together with a proband for genetic diagnosis would cause a misattributed parentage (MP), possibly leading to misinterpretation of the pathogenicity of genomic variants. Therefore, a rapid and cost-effective paternity/maternity test is warranted before genetic testing. Although low-pass genome sequencing (GS) has been widely used for the clinical diagnosis of germline structural variants, it is limited in paternity/maternity tests due to the inadequate read coverage for genotyping. Herein, we developed rapid paternity/maternity testing based on low-pass GS with trio-based and duo-based analytical modes provided. The optimal read-depth was determined as 1-fold per case regardless of sequencing read lengths, modes, and library construction methods by using 10 trios with confirmed genetic relationships. In addition, low-pass GS with different library construction methods and 1-fold read-depths were performed for 120 prenatal trios prospectively collected, and 1 trio was identified as non-maternity, providing a rate of MP of 0.83% (1/120). All results were further confirmed via quantitative florescent PCR. Overall, we developed a rapid, cost-effective, and sequencing platform-neutral paternity/maternity test based on low-pass GS and demonstrated the feasibility of its clinical use in confirming the parentage for genetic diagnosis.


Subject(s)
Genetic Testing , Paternity , Female , Pregnancy , Humans , Genetic Testing/methods , Chromosome Mapping , Parents , Cytogenetic Analysis
7.
Front Endocrinol (Lausanne) ; 14: 1147898, 2023.
Article in English | MEDLINE | ID: mdl-37206440

ABSTRACT

Survival rates for children and adolescents diagnosed with malignancy have been steadily increasing due to advances in oncology treatments. These treatments can have a toxic effect on the gonads. Currently, oocyte and sperm cryopreservation are recognized as well-established and successful strategies for fertility preservation for pubertal patients, while the use of gonadotropin-releasing hormone agonists for ovarian protection is controversial. For prepubertal girls, ovarian tissue cryopreservation is the sole option. However, the endocrinological and reproductive outcomes after ovarian tissue transplantation are highly heterogeneous. On the other hand, immature testicular tissue cryopreservation remains the only alternative for prepubertal boys, yet it is still experimental. Although there are several published guidelines for navigating fertility preservation for pediatric and adolescent patients as well as transgender populations, it is still restricted in clinical practice. This review aims to discuss the indications and clinical outcomes of fertility preservation. We also discuss the probably effective and efficient workflow to facilitate fertility preservation.


Subject(s)
Fertility Preservation , Male , Cryopreservation , Delivery of Health Care , Oocytes , Semen , Humans , Female , Child , Adolescent , Testis , Ovary
8.
Hum Reprod ; 38(8): 1628-1642, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37218343

ABSTRACT

STUDY QUESTION: Can multiple-site low-pass genome sequencing (GS) of products of conception (POCs) improve the detection of genetic abnormalities, especially heterogeneously distributed mosaicism and homogeneously distributed mosaicism in first-trimester miscarriage? SUMMARY ANSWER: Multiple-site sampling combined with low-pass GS significantly increased genetic diagnostic yield (77.0%, 127/165) of first-trimester miscarriages, with mosaicisms accounting for 17.0% (28/165), especially heterogeneously distributed mosaicisms (75%, 21/28) that are currently underappreciated. WHAT IS KNOWN ALREADY: Aneuploidies are well known to cause first-trimester miscarriage, which are detectable by conventional karyotyping and next-generation sequencing (NGS) on a single-site sampling basis. However, there are limited studies demonstrating the implications of mosaic genetic abnormalities in first-trimester miscarriages, especially when genetic heterogeneity is present in POCs. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional cohort study carried out at a university-affiliated public hospital. One hundred seventy-four patients diagnosed with first-trimester miscarriage from December 2018 to November 2021 were offered ultrasound-guided manual vacuum aspiration (USG-MVA) treatment. Products of conception were subjected to multiple-site low-pass GS for the detection of chromosomal imbalances. PARTICIPANTS/MATERIALS, SETTING, METHODS: For each POC, multiple sites of villi (three sites on average) were biopsied for low-pass GS. Samples with maternal cell contamination (MCC) and polyploidy were excluded based on the quantitative fluorescence polymerase chain reaction (QF-PCR) results. The spectrum of chromosomal abnormalities, including mosaicism (heterogeneously distributed and homogeneously distributed) and constitutional abnormalities was investigated. Chromosomal microarray analysis and additional DNA fingerprinting were used for validation and MCC exclusion. A cross-platform comparison between conventional karyotyping and our multiple-site approach was also performed. MAIN RESULTS AND THE ROLE OF CHANCE: One hundred sixty-five POCs (corresponding to 490 DNA samples) were subjected to low-pass GS. Genetic abnormalities were detected in 77.0% (127/165) of POCs by our novel approach. Specifically, 17.0% (28/165) of cases had either heterogeneously distributed mosaicism (12.7%, 21/165) or homogeneously distributed mosaicism (6.1%, 10/165) (three cases had both types of mosaicism). The remaining 60.0% (99/165) of cases had constitutional abnormalities. In addition, in the 71 cases with karyotyping performed in parallel, 26.8% (19/71) of the results could be revised by our approach. LIMITATIONS, REASONS FOR CAUTION: Lack of a normal gestational week-matched cohort might hinder the establishment of a causative link between mosaicisms and first-trimester miscarriage. WIDER IMPLICATIONS OF THE FINDINGS: Low-pass GS with multiple-site sampling increased the detection of chromosomal mosaicisms in first-trimester miscarriage POCs. This innovative multiple-site low-pass GS approach enabled the novel discovery of heterogeneously distributed mosaicism, which was prevalent in first-trimester miscarriage POCs and frequently observed in preimplantation embryos, but is currently unappreciated by conventional single-site cytogenetic investigations. STUDY FUNDING/COMPETING INTEREST(S): This work was supported partly by Research Grant Council Collaborative Research Fund (C4062-21GF to K.W.C), Science and Technology Projects in Guangzhou (202102010005 to K.W.C), Guangdong-Hong Kong Technology Cooperation Funding Scheme (TCFS), Innovation and Technology Fund (GHP/117/19GD to K.W.C), HKOG Direct Grant (2019.050 to J.P.W.C), and Hong Kong Health and Medical Research Fund (05160406 to J.P.W.C). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Abortion, Spontaneous , Pregnancy , Female , Humans , Abortion, Spontaneous/genetics , Pregnancy Trimester, First , Mosaicism , Cross-Sectional Studies , Pilot Projects
9.
Hum Genet ; 142(3): 363-377, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36526900

ABSTRACT

Currently, routine genetic investigation for male infertility includes karyotyping analysis and PCR for Y chromosomal microdeletions to provide prognostic information such as sperm retrieval success rate. However, over 85% of male infertility remain idiopathic. We assessed 101 male patients with primary infertility in a retrospective cohort analysis who have previously received negative results from standard-of-care tests. Mate-pair genome sequencing (large-insert size library), an alternative long-DNA sequencing method, was performed to detect clinically significant structural variants (SVs) and copy-number neutral absence of heterozygosity (AOH). Candidate SVs were filtered against our in-house cohort of 1077 fertile men. Genes disrupted by potentially clinically significant variants were correlated with single-cell gene expression profiles of human fetal and postnatal testicular developmental lineages and adult germ cells. Follow-up studies were conducted for each patient with clinically relevant finding(s). Molecular diagnoses were made in 11.1% (7/63) of patients with non-obstructive azoospermia and 13.2% (5/38) of patients with severe oligozoospermia. Among them, 12 clinically significant SVs were identified in 12 cases, including five known syndromes, one inversion, and six SVs with direct disruption of genes by intragenic rearrangements or complex insertions. Importantly, a genetic defect related to intracytoplasmic sperm injection (ICSI) failure was identified in a patient with non-obstructive azoospermia, illustrating the additional value of an etiologic diagnosis in addition to determining sperm retrieval rate. Our study reveals a landscape of various genomic variants in 101 males with idiopathic infertility, not only advancing understanding of the underlying mechanisms of male infertility, but also impacting clinical management.


Subject(s)
Azoospermia , Infertility, Male , Adult , Humans , Male , Azoospermia/genetics , Retrospective Studies , Semen , Infertility, Male/genetics , Testis
10.
Nucleic Acids Res ; 51(D1): D1168-D1178, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350663

ABSTRACT

Characterization of the specific expression and chromatin profiles of genes enables understanding how they contribute to tissue/organ development and the mechanisms leading to diseases. Whilst the number of single-cell sequencing studies is increasing dramatically; however, data mining and reanalysis remains challenging. Herein, we systematically curated the up-to-date and most comprehensive datasets of sequencing data originating from 2760 bulk samples and over 5.1 million single-cells from multiple developmental periods from humans and multiple model organisms. With unified and systematic analysis, we profiled the gene expression and chromatin accessibility among 481 cell-types, 79 tissue-types and 92 timepoints, and pinpointed cells with the co-expression of target genes. We also enabled the detection of gene(s) with a temporal and cell-type specific expression profile that is similar to or distinct from that of a target gene. Additionally, we illustrated the potential upstream and downstream gene-gene regulation interactions, particularly under the same biological process(es) or KEGG pathway(s). Thus, TEDD (Temporal Expression during Development Database), a value-added database with a user-friendly interface, not only enables researchers to identify cell-type/tissue-type specific and temporal gene expression and chromatin profiles but also facilitates the association of genes with undefined biological functions in development and diseases. The database URL is https://TEDD.obg.cuhk.edu.hk/.


Subject(s)
Databases, Genetic , Gene Expression , Humans , Chromatin/genetics , Gene Expression Regulation , User-Computer Interface , Animals , Embryonic Development , Organ Specificity
12.
Int J Neonatal Screen ; 8(2)2022 May 27.
Article in English | MEDLINE | ID: mdl-35735787

ABSTRACT

Recent advances in genomic sequencing technologies have expanded practitioners' utilization of genetic information in a timely and efficient manner for an accurate diagnosis. With an ever-increasing resource of genomic data from progress in the interpretation of genome sequences, clinicians face decisions about how and when genomic information should be presented to families, and at what potential expense. Presently, there is limited knowledge or experience in establishing the value of implementing genome sequencing into newborn screening. Herein we provide insight into the complexities and the burden and benefits of knowledge resulting from genome sequencing of newborns.

13.
Front Genet ; 13: 803088, 2022.
Article in English | MEDLINE | ID: mdl-35495136

ABSTRACT

Background: Structural variations (SVs) are various types of the genomic rearrangements encompassing at least 50 nucleotides. These include unbalanced gains or losses of DNA segments (copy number changes, CNVs), balanced rearrangements (such as inversion or translocations), and complex combinations of several distinct rearrangements. SVs are known to play a significant role in contributing to human genomic disorders by disrupting the protein-coding genes or the interaction(s) with cis-regulatory elements. Recently, different types of genome sequencing-based tests have been introduced in detecting various types of SVs other than CNVs and regions with absence of heterozygosity (AOH) with clinical significance. Method: In this study, we applied the mate-pair low pass (∼4X) genome sequencing with large DNA-insert (∼5 kb) in a cohort of 100 patients with neurodevelopmental disorders who did not receive informative results from a routine CNV investigation. Read-depth-based CNV analysis and chimeric-read-pairs analysis were used for CNV and SV analyses. The region of AOH was indicated by a simultaneous decrease in the rate of heterozygous SNVs and increase in the rate of homozygous SNVs. Results: First, we reexamined the 25 previously reported CNVs among 24 cases in this cohort. The boundaries of these twenty-five CNVs including 15 duplications and 10 deletions detected were consistent with the ones indicated by the chimeric-read-pairs analysis, while the location and orientation were determined in 80% of duplications (12/15). Particularly, one duplication was involved in complex rearrangements. In addition, among all the 100 cases, 10% of them were detected with rare or complex SVs (>10 Kb), and 3% were with multiple AOH (≥5 Mb) locating in imprinting chromosomes identified. In particular, one patient with an overall value of 214.5 Mb of AOH identified on 13 autosomal chromosomes suspected parental consanguinity. Conclusion: In this study, mate-pair low-pass GS resolved a significant proportion of CNVs with inconclusive significance, and detected additional SVs and regions of AOH in patients with undiagnostic neurodevelopmental disorders. This approach complements the first-tier CNV analysis for NDDs, not only by increasing the resolution of CNV detection but also by enhancing the characterization of SVs and the discovery of potential causative regions (or genes) contributory to could be complex in composition NDDs.

15.
Asian J Androl ; 24(3): 248-254, 2022.
Article in English | MEDLINE | ID: mdl-35017386

ABSTRACT

Apparently balanced chromosomal structural rearrangements are known to cause male infertility and account for approximately 1% of azoospermia or severe oligospermia. However, the underlying mechanisms of pathogenesis and etiologies are still largely unknown. Herein, we investigated apparently balanced interchromosomal structural rearrangements in six cases with azoospermia/severe oligospermia to comprehensively identify and delineate cryptic structural rearrangements and the related copy number variants. In addition, high read-depth genome sequencing (GS) (30-fold) was performed to investigate point mutations causative of male infertility. Mate-pair GS (4-fold) revealed additional structural rearrangements and/or copy number changes in 5 of 6 cases and detected a total of 48 rearrangements. Overall, the breakpoints caused truncations of 30 RefSeq genes, five of which were associated with spermatogenesis. Furthermore, the breakpoints disrupted 43 topological-associated domains. Direct disruptions or potential dysregulations of genes, which play potential roles in male germ cell development, apoptosis, and spermatogenesis, were found in all cases (n = 6). In addition, high read-depth GS detected dual molecular findings in case MI6, involving a complex rearrangement and two point mutations in the gene DNAH1. Overall, our study provided the molecular characteristics of apparently balanced interchromosomal structural rearrangements in patients with male infertility. We demonstrated the complexity of chromosomal structural rearrangements, potential gene disruptions/dysregulation and single-gene mutations could be the contributing mechanisms underlie male infertility.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Azoospermia/genetics , Chromosome Aberrations , Humans , Infertility, Male/genetics , Male , Oligospermia/genetics , Translocation, Genetic
16.
Nat Commun ; 13(1): 35, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013264

ABSTRACT

Half-Heusler and full-Heusler compounds were considered as independent phases with a natural composition gap. Here we report the discovery of TiRu1+xSb (x = 0.15 ~ 1.0) solid solution with wide homogeneity range and tunable p- to n-type semiconducting thermoelectrics, which bridges the composition gap between half- and full-Heusler phases. At the high-Ru end, strange glass-like thermal transport behavior with unusually low lattice thermal conductivity (~1.65 Wm-1K-1 at 340 K) is observed for TiRu1.8Sb, being the lowest among reported half-Heusler phases. In the composition range of 0.15 < x < 0.50, TiRu1+xSb shows abnormal semiconducting behaviors because tunning Ru composition results in band structure change and carrier-type variation simultaneously, which seemingly correlates with the localized d electrons. This work reveals the possibility of designing fascinating half-Heusler-like materials by manipulating the tetrahedral site occupancy, and also demonstrates the potential of tuning crystal and electronic structures simultaneously to realize intriguing physical properties.

17.
Stroke Vasc Neurol ; 7(3): 182-189, 2022 06.
Article in English | MEDLINE | ID: mdl-34880113

ABSTRACT

OBJECTIVES: The predisposition of intracranial atherosclerotic disease (ICAD) to East Asians over Caucasians infers a genetic basis which, however, remains largely unknown. Higher prevalence of vascular risk factors (VRFs) in Chinese over Caucasian patients who had a stroke, and shared risk factors of ICAD with other stroke subtypes indicate genes related to VRFs and/or other stroke subtypes may also contribute to ICAD. METHODS: Unrelated symptomatic patients with ICAD were recruited for genome sequencing (GS, 60-fold). Rare and potentially deleterious single-nucleotide variants (SNVs) and small insertions/deletions (InDels) were detected in genome-wide and correlated to genes related to VRFs and/or other stroke subtypes. Rare aneuploidies, copy number variants (CNVs) and chromosomal structural rearrangements were also investigated. Lastly, candidate genes were used for pathway and gene ontology enrichment analysis. RESULTS: Among 92 patients (mean age at stroke onset 61.0±9.3 years), GS identified likely ICAD-associated rare genomic variants in 54.3% (50/92) of patients. Forty-eight patients (52.2%, 48/92) had 59 rare SNVs/InDels reported or predicted to be deleterious in genes related to VRFs and/or other stroke subtypes. None of the 59 rare variants were identified in local subjects without ICAD (n=126). 31 SNVs/InDels were related to conventional VRFs, and 28 were discovered in genes related to other stroke subtypes. Our study also showed that rare CNVs (n=7) and structural rearrangement (a balanced translocation) were potentially related to ICAD in 8.7% (8/92) of patients. Lastly, candidate genes were significantly enriched in pathways related to lipoprotein metabolism and cellular lipid catabolic process. CONCLUSIONS: Our GS study suggests a role of rare genomic variants with various variant types contributing to the development of ICAD in Chinese patients.


Subject(s)
Intracranial Arteriosclerosis , Stroke , Asian People/genetics , China/epidemiology , Genomics , Humans , Intracranial Arteriosclerosis/complications , Intracranial Arteriosclerosis/diagnostic imaging , Intracranial Arteriosclerosis/genetics , Stroke/epidemiology
18.
Front Genet ; 12: 757170, 2021.
Article in English | MEDLINE | ID: mdl-34925449

ABSTRACT

With the advent of genomic sequencing, a number of balanced and unbalanced structural variants (SVs) can be detected per individual. Mainly due to incompleteness and the scattered nature of the available annotation data of the human genome, manual interpretation of the SV's clinical significance is laborious and cumbersome. Since bioinformatic tools developed for this task are limited, a comprehensive tool to assist clinical outcome prediction of SVs is warranted. Herein, we present SVInterpreter, a free Web application, which analyzes both balanced and unbalanced SVs using topologically associated domains (TADs) as genome units. Among others, gene-associated data (as function and dosage sensitivity), phenotype similarity scores, and copy number variants (CNVs) scoring metrics are retrieved for an informed SV interpretation. For evaluation, we retrospectively applied SVInterpreter to 97 balanced (translocations and inversions) and 125 unbalanced (deletions, duplications, and insertions) previously published SVs, and 145 SVs identified from 20 clinical samples. Our results showed the ability of SVInterpreter to support the evaluation of SVs by (1) confirming more than half of the predictions of the original studies, (2) decreasing 40% of the variants of uncertain significance, and (3) indicating several potential position effect events. To our knowledge, SVInterpreter is the most comprehensive TAD-based tool to identify the possible disease-causing candidate genes and to assist prediction of the clinical outcome of SVs. SVInterpreter is available at http://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py.

19.
Front Genet ; 12: 742325, 2021.
Article in English | MEDLINE | ID: mdl-34616436

ABSTRACT

Background: Low-pass genome sequencing (GS) detects clinically significant copy number variants (CNVs) in prenatal diagnosis. However, detection at improved resolutions leads to an increase in the number of CNVs identified, increasing the difficulty of clinical interpretation and management. Methods: Trio-based low-pass GS was performed in 315 pregnancies undergoing invasive testing. Rare CNVs detected in the fetuses were investigated. The characteristics of rare CNVs were described and compared to curated CNVs in other studies. Results: A total of 603 rare CNVs, namely, 597 constitutional and 6 mosaic CNVs, were detected in 272 fetuses (272/315, 86.3%), providing 1.9 rare CNVs per fetus (603/315). Most CNVs were smaller than 1 Mb (562/603, 93.2%), while 1% (6/603) were mosaic. Forty-six de novo (7.6%, 46/603) CNVs were detected in 11.4% (36/315) of the cases. Eighty-four CNVs (74 fetuses, 23.5%) involved disease-causing genes of which the mode of inheritance was crucial for interpretation and assessment of recurrence risk. Overall, 31 pathogenic/likely pathogenic CNVs were detected, among which 25.8% (8/31) were small (<100 kb; n = 3) or mosaic CNVs (n = 5). Conclusion: We examined the landscape of rare CNVs with parental inheritance assignment and demonstrated that they occur frequently in prenatal diagnosis. This information has clinical implications regarding genetic counseling and consideration for trio-based CNV analysis.

20.
Genes (Basel) ; 12(4)2021 03 25.
Article in English | MEDLINE | ID: mdl-33806256

ABSTRACT

To evaluate the performance of noninvasive prenatal screening (NIPS) in the detection of common aneuploidies in a population-based study, a total of 86,262 single pregnancies referred for NIPS were prospectively recruited. Among 86,193 pregnancies with reportable results, follow-up was successfully conducted in 1160 fetuses reported with a high-risk result by NIPS and 82,511 cases (95.7%) with a low-risk result. The screen-positive rate (SPR) of common aneuploidies and sex chromosome abnormalities (SCAs) provided by NIPS were 0.7% (586/83,671) and 0.6% (505/83,671), respectively. The positive predictive values (PPVs) for Trisomy 21, Trisomy 18, Trisomy 13 and SCAs were calculated as 89.7%, 84.0%, 52.6% and 38.0%, respectively. In addition, less rare chromosomal abnormalities, including copy number variants (CNVs), were detected, compared with those reported by NIPS with higher read-depth. Among these rare abnormalities, only 23.2% (13/56) were confirmed by prenatal diagnosis. In total, four common trisomy cases were found to be false negative, resulting in a rate of 0.48/10,000 (4/83,671). In summary, this study conducted in an underdeveloped region with limited support for the new technology development and lack of cost-effective prenatal testing demonstrates the importance of implementing routine aneuploidy screening in the public sector for providing early detection and precise prognostic information.


Subject(s)
Aneuploidy , Cell-Free Nucleic Acids/genetics , Fetus/pathology , Noninvasive Prenatal Testing/methods , Prenatal Diagnosis/methods , Sex Chromosome Aberrations , Trisomy/diagnosis , Adolescent , Adult , Cell-Free Nucleic Acids/analysis , China , Female , Fetus/metabolism , Humans , Male , Middle Aged , Pregnancy , Prospective Studies , Trisomy/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...