Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-486499

ABSTRACT

The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compromised the efficacy of currently available vaccines and monoclonal antibody (mAb)-based treatment options for COVID-19. The limited number of authorized small-molecule direct-acting antivirals present challenges with pill burden, the necessity for intravenous administration or potential drug interactions. There remains an unmet medical need for effective and convenient treatment options for SARS-CoV-2 infection. SARS-CoV-2 is an RNA virus that depends on host intracellular ribonucleotide pools for its replication. Dihydroorotate dehydrogenase (DHODH) is a ubiquitous host enzyme that is required for de novo pyrimidine synthesis. The inhibition of DHODH leads to a depletion of intracellular pyrimidines, thereby impacting viral replication in vitro. Brequinar (BRQ) is an orally available, selective, and potent low nanomolar inhibitor of human DHODH that has been shown to exhibit broad spectrum inhibition of RNA virus replication. However, host cell nucleotide salvage pathways can maintain intracellular pyrimidine levels and compensate for BRQ-mediated DHODH inhibition. In this report, we show that the combination of BRQ and the salvage pathway inhibitor dipyridamole (DPY) exhibits strong synergistic antiviral activity in vitro against SARS-CoV-2 by enhanced depletion of the cellular pyrimidine nucleotide pool. The combination of BRQ and DPY showed antiviral activity against the prototype SARS-CoV-2 as well as the Beta (B.1.351) and Delta (B.1.617.2) variants. These data support the continued evaluation of the combination of BRQ and DPY as a broad-spectrum, host-acting antiviral strategy to treat SARS-CoV-2 and potentially other RNA virus infections.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-455262

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, Calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals Calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21253604

ABSTRACT

In this communication, we report on the genomic surveillance of SARS-CoV-2 using wastewater samples in Jefferson County, KY. In February 2021, we analyzed seven wastewater samples for SARS-CoV-2 genomic surveillance. Variants observed in smaller catchment areas, such as neighborhood manhole locations, were not necessarily consistent when compared to associated variant results in downstream treatment plants, suggesting catchment size or population could impact the ability to detect diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...