Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Biol Evol ; 17(7): 1010-21, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10889214

ABSTRACT

Phospholipases A(2) (PLA(2)s) catalyzing the hydrolysis of phospholipids form a family of proteins with diverse physiological and pharmacological properties. While there have been several reports on the cloning of PLA(2) cDNAs, very few studies have been carried out on the PLA(2) genes and, most importantly, no information has been available on the gene structure and function of group I venom PLA(2). This study, on the PLA(2) gene from a spitting cobra, besides being the very first report on any venom group I PLA(2) gene, constitutes the missing link in the biology and evolution of phospholipases. The 4-kb gene consists of four exons and three introns and resembles the human pancreatic PLA(2) gene. However, the size of intron 3 in particular is much smaller than that in the pancreatic gene. Interestingly, the information for the toxic and most of the pharmacological properties of the venom PLA(2) can be attributed to the end of exon 3 and the whole of exon 4 of the gene. This functional delineation fits in well with the theory of adaptive evolution exhibited by the venom PLA(2)s. We also show that the mammalian pancreatic and elapid PLA(2)s have similar paths of evolution (probably following gene duplication) from a common ancestral gene. Venom group II phospholipases, although evolved from the same ancestor, diverged early in evolution from the group I PLA(2) genes. Intriguingly, CAT reporter gene assays and DNase 1 footprinting studies on the promoter and its deletion constructs using CHO and HepG2 cell lines identified the possible involvement of cis elements such as Sp1, AP2, gamma-IRE, and (TG)(12) repeats in the expression of the gene in a tissue-specific manner.


Subject(s)
Elapid Venoms/enzymology , Phospholipases A/genetics , Phylogeny , Animals , Base Sequence , CHO Cells , Cricetinae , DNA , DNA Primers , Elapidae , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Transcription, Genetic , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...