Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Medchemcomm ; 8(11): 2093-2099, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-30108726

ABSTRACT

Myeloperoxidase, a mammalian peroxidase involved in the immune system as an anti-microbial first responder, can produce hypochlorous acid in response to invading pathogens. Myeloperoxidase has been implicated in several chronic pathological diseases due to the chronic production of hypochlorous acid, as well as other reactive radical species. A high throughput screen and triaging protocol was developed to identify a reversible inhibitor of myeloperoxidase toward the potential treatment of chronic diseases such as atherosclerosis. The identification and characterization of a reversible myeloperoxidase inhibitor, 7-(benzyloxy)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine is described.

2.
Rapid Commun Mass Spectrom ; 28(13): 1535-43, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24861605

ABSTRACT

RATIONALE: Liquid chromatography/tandem mass spectrometry (LC/MS/MS) assays are increasingly being used for absolute quantitation of proteins due to high specificity and low cost. However, the major challenge for the LC/MS method is insufficient sensitivity. This paper details the strategies developed to maximize the sensitivity from aspects of chromatography, mass spectrometry, and sample preparation to achieve a highly sensitive LC/MS method. METHODS: The method is based on the LC/MS/MS measurement of a surrogate peptide generated from trypsin digestion of interferon-gamma-inducible protein-10 (IP-10). The sample preparation strategy involved selectively extracting IP-10 and removing high-abundance serum proteins through acidified protein precipitation (PPT). It was revealed in this work that these high-abundance serum proteins, if not separated from the protein of interest, could cause significant ionization saturation and high background noise in selected reaction monitoring (SRM), leading to a 100-fold higher lower limit of quantification (LLOQ). RESULTS: Our method demonstrated that the acidified PPT could be optimized to selectively extract the protein of interest with full recovery of 97% to 103%, while the high-abundance serum proteins could be effectively removed with minimal matrix effect of 90% to 93%. For the first time, a highly sensitive LC/MS method with a LLOQ of 31.62 pM for the quantitation of IP-10 has been achieved, which is a 100-fold improvement over the generic method. CONCLUSIONS: The described method offers excellent sensitivity with advantages of being antibody reagent independent and leads to significant cost and time savings. It has been successfully employed to determine both total and free IP-10 levels in human serum samples. This method development strategy may also be applied to other small proteins.


Subject(s)
Chemokine CXCL10/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Blood Proteins/chemistry , Chemokine CXCL10/chemistry , Formates , Humans , Least-Squares Analysis , Sensitivity and Specificity , Trypsin
3.
Mol Cell Biol ; 29(6): 1649-60, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19114550

ABSTRACT

One of the central questions in eukaryotic transcription is how activators can transmit their signal to stimulate gene expression in the context of chromatin. The multisubunit SAGA coactivator complex has both histone acetyltransferase and deubiquitination activities and remodels chromatin to allow transcription. Whether and how SAGA is able to regulate transcription at specific loci is poorly understood. Using mass spectrometry, immunoprecipitation, and Western blot analysis, we have identified human SPT20 (hSPT20) as the human homologue of the yeast Spt20 and show that hSPT20 is a bona fide subunit of the human SAGA (hSAGA; previously called TFTC/STAGA/PCAF) complex and that hSPT20 is required for the integrity of the hSAGA complex. We demonstrate that hSPT20 and other hSAGA subunits, together with RNA polymerase II, are specifically recruited to genes induced by endoplasmic reticulum (ER) stress. In good agreement with the recruitment of hSAGA to the ER stress-regulated genes, knockdown of hSTP20 hampers ER stress response. Surprisingly, hSPT20 recruitment was not observed for genes induced by another type of stress. These results provide evidence for a direct and specific role of the hSPT20-containing SAGA complex in transcriptional induction of ER stress-responsive genes. Thus, hSAGA regulates the transcription of stress-responsive genes in a stress type-dependent manner.


Subject(s)
Endoplasmic Reticulum/metabolism , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Amino Acid Sequence , Gene Expression Regulation , HeLa Cells , Humans , Molecular Sequence Data , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Polymerase II/metabolism , Transcription Factors/genetics , Transcription, Genetic , p300-CBP Transcription Factors/genetics
4.
J Am Soc Mass Spectrom ; 16(8): 1231-8, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15978832

ABSTRACT

A set of guidelines has been developed for using the peptide hits technique (PHT) as a semi-quantitative screening tool for the identification of proteins that change in abundance in a complex mixture. The dataset that formed the basis for these experiments was created using a cell lysate derived from the yeast Saccharomyces cerevisiae, spiked at various levels with serum albumin (BSA), and analyzed by LC/MS/MS and SEQUEST. Knowing that the level of only one protein (BSA) actually changed in the mixture allowed for the development and refinement of the necessary bioinformatics and statistical analyses, e.g., principal component analysis (PCA), normalization, and analysis of variation (ANOVA). As expected, the number of BSA peptide hits changed in proportion to the amount of BSA added to the sample. PCA was able to clearly distinguish between the spiked samples and the untreated sample, indicating that PCA may be able to classify samples, e.g., healthy versus diseased, in future experiments. The use of an endogenous "housekeeping" protein was found to be superior to the use of total hits for data normalization prior to analysis. An ANOVA based model readily identified BSA as a protein of interest, that is, one likely to be changing from amongst the background proteins, indicating that an ANOVA model may be able to identify individual proteins in target or biomarker discovery experiments. General guidelines based on these combined observations are set forth for future analyses and the rapid screening for candidate proteins of interest.


Subject(s)
Guidelines as Topic , Mass Spectrometry/methods , Mass Spectrometry/standards , Proteomics/methods , Proteomics/standards , Analysis of Variance , Cell Extracts/chemistry , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae Proteins/analysis
5.
Methods ; 35(3): 291-302, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15722225

ABSTRACT

Discovery of novel protein biomarkers is essential for successful drug discovery and development. These novel protein biomarkers may aid accelerated drug efficacy, response, or toxicity decision making based on their enhanced sensitivity and/or specificity. These biomarkers, if necessary, could eventually be converted into novel diagnostic marker assays. Proteomic platforms developed over the past few years have given us the ability to rapidly identify novel protein biomarkers in various biological matrices from cell cultures (lysates, supernatants) to human clinical samples (serum, plasma, and urine). In this article, we delineate an approach to biomarker discovery. This approach is divided into three steps, (i) identification of markers, (ii) prioritization of identified markers, and (iii) preliminary validation (qualification) of prioritized markers. Using drug-induced idiosyncratic hepatotoxicity as a case study, the article elaborates methods and techniques utilized during the three steps of biomarker discovery process. The first step involves identification of markers using multi-dimensional protein identification technology. The second step involves prioritization of a subset of marker candidates based on several criteria such as availability of reagent set for assay development and literature association to disease biology. The last step of biomarker discovery involves development of preliminary assays to confirm the bio-analytical measurements from the first step, as well as qualify the marker(s) in pre-clinical models, to initiate future marker validation and development.


Subject(s)
Biomarkers/chemistry , Chromatography, High Pressure Liquid/methods , Protein Array Analysis/methods , Proteins/isolation & purification , Proteomics/methods , 14-3-3 Proteins/chemistry , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Blotting, Western , Cells, Cultured , Computational Biology , Dogs , Enzyme-Linked Immunosorbent Assay , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Immunoassay/methods , Liver/drug effects , Macrophage Migration-Inhibitory Factors/chemistry , Mass Spectrometry/methods , Proteins/chemistry , Rats , Sensitivity and Specificity , Technology, Pharmaceutical/methods , Time Factors
6.
J Proteome Res ; 2(6): 643-9, 2003.
Article in English | MEDLINE | ID: mdl-14692458

ABSTRACT

Protein expression trends in yeast were monitored as a function of carbon source (glucose versus galactose) using multidimensional high performance liquid chromatography (HPLC) coupled to gas-phase fractionation, using relative intensity triggering (GPFri). Size exclusion HPLC was used to separate whole cell lysates, and following proteolysis of these fractions, each was separated by reversed phase HPLC, which was coupled on-line via electrospray to an ion trap mass spectrometer. The GPFri technique increased the dynamic range of proteins detected by increasing the number of peptide ions subjected to low energy collision induced dissociation to the 24 most intense ions in each of the survey scans. No protein or peptide labeling was used; instead, the number of SEQUEST identifications for each peptide (previously termed "hits") were used as a semiquantitative means of assessing both the direction (increase vs decrease) and significance of change in protein abundance. None of the traditional SEQUEST filters, e.g., Xcorr, DelCn, Sp, Rsp, etc., were employed in this study. Instead, a Student's t-test was used to distinguish those proteins that significantly and reproducibly changed between carbon sources from those that did not. This relied on the SEQUEST misassignments occurring in equal proportion between treatments and thereby negating each other; statistically significant changes in SEQUEST assignments were nonrandom events by definition and therefore reflective of correct identifications. This method of data analysis showed a large degree of concordance with results reported by other groups in similar transcriptional profiling and proteomic experiments. In all, 176 and 231 (fold-change > or = 1.1; p < or = 0.05) proteins were identified as being increased in peptide hit number when the yeast cells' source of carbon was changed between glucose and galactose, respectively.


Subject(s)
Carbon/metabolism , Gene Expression Profiling , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Algorithms , Chromatography, High Pressure Liquid/methods , Galactose/metabolism , Gene Expression Regulation, Fungal , Glucose/metabolism , Saccharomyces cerevisiae Proteins/genetics
7.
J Proteome Res ; 1(2): 161-9, 2002.
Article in English | MEDLINE | ID: mdl-12643536

ABSTRACT

A hypothesis was formed that it would be possible to isolate an adequate amount of protein from a patient, having normal renal function, to identify biological markers of a particular disease state using a variety of proteomics techniques. To support this hypothesis, three samples of urine were collected from a volunteer: first when healthy, later when experiencing acute inflammation due to a pilonidal abcess, and again later still after successful recovery from the condition. The urine from these samples was processed by solid-phase extraction to concentrate and desalt the endogenous proteins and peptides. The proteins and peptides from these urine samples were analyzed in three different experiments: (1) traditional two-dimensional gel electrophoresis followed by proteolysis and mass spectrometric identification of various protein spots, (2) whole mixture proteolysis followed by one-dimensional packed capillary liquid chromatography and tandem mass spectrometry, (3) whole mixture proteolysis followed by two-dimensional capillary liquid chromatography and tandem mass spectrometry. In all three cases, a set of proteins was identified representing putative biomarkers. Each of these proteins was then found to have been previously linked in the scientific literature to inflammation. One acute phase reactant in particular, orosomucoid, was readily observed in all three experiments to dramatically increase in abundance, thereby supporting the hypothesis.


Subject(s)
Biomarkers , Proteomics , Urine/chemistry , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Humans , Orosomucoid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...