Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(4): 7305-7317, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33844505

ABSTRACT

The spontaneous phase separation of two or more polymers is a thermodynamic process that can take place in both biological and synthetic materials and which results in the structuring of the matter from the micro- to the nanoscale. For photonic applications, it allows forming quasi-periodic or disordered assemblies of light scatterers at high throughput and low cost. The wet process methods currently used to fabricate phase-separated nanostructures (PSNs) limit the design possibilities, which in turn hinders the deployment of PSNs in commercialized products. To tackle this shortcoming, we introduce a versatile and industrially scalable deposition method based on the inkjet printing of a polymer blend, leading to PSNs with a feature size that is tuned from a few micrometers down to sub-100 nm. Consequently, PSNs can be rapidly processed into the desired macroscopic design. We demonstrate that these printed PSNs can improve light management in manifold photonic applications, exemplified here by exploiting them as a light extraction layer and a metasurface for light-emitting devices and point-of-care biosensors, respectively.

2.
Opt Express ; 28(6): 8878-8897, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32225505

ABSTRACT

The rise in the power conversion efficiency (PCE) of perovskite solar cells has triggered enormous interest in perovskite-based tandem photovoltaics. One key challenge is to achieve high transmission of low energy photons into the bottom cell. Here, nanostructured front electrodes for 4-terminal perovskite/crystalline-silicon (perovskite/c-Si) tandem solar cells are developed by conformal deposition of indium tin oxide (ITO) on self-assembled polystyrene nanopillars. The nanostructured ITO is optimized for reduced reflection and increased transmission with a tradeoff in increased sheet resistance. In the optimum case, the nanostructured ITO electrodes enhance the transmittance by ∼7% (relative) compared to planar references. Perovskite/c-Si tandem devices with nanostructured ITO exhibit enhanced short-circuit current density (2.9 mA/cm2 absolute) and PCE (1.7% absolute) in the bottom c-Si solar cell compared to the reference. The improved light in-coupling is more pronounced for elevated angle of incidence. Energy yield enhancement up to ∼10% (relative) is achieved for perovskite/c-Si tandem architecture with the nanostructured ITO electrodes. It is also shown that these nanostructured ITO electrodes are also compatible with various other perovskite-based tandem architectures and bear the potential to improve the PCE up to 27.0%.

3.
Nanoscale ; 10(14): 6651-6659, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29582026

ABSTRACT

In this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers. We demonstrate that these light scattering nanopillars yield a short-circuit current density increase of +33%rel with respect to equivalent solar cells processed on a planar reflector. Moreover, we experimentally show that they outperform randomly textured substrates that are commonly used for achieving efficient light trapping. Complementary optical simulations are conducted on an accurate 3D model to analyze the superior light harvesting properties of the nanopillar array and to derive general design rules. Our approach allows one to easily tune the morphology of the self-assembled nanostructures, is up-scalable and operated at room temperature, and is applicable to other photovoltaic technologies.

4.
Sci Adv ; 3(10): e1700232, 2017 10.
Article in English | MEDLINE | ID: mdl-29057320

ABSTRACT

The wings of the black butterfly, Pachliopta aristolochiae, are covered by micro- and nanostructured scales that harvest sunlight over a wide spectral and angular range. Considering that these properties are particularly attractive for photovoltaic applications, we analyze the contribution of these micro- and nanostructures, focusing on the structural disorder observed in the wing scales. In addition to microspectroscopy experiments, we conduct three-dimensional optical simulations of the exact scale structure. On the basis of these results, we design nanostructured thin photovoltaic absorbers of disordered nanoholes, which combine efficient light in-coupling and light-trapping properties together with a high angular robustness. Finally, inspired by the phase separation mechanism of self-assembled biophotonic nanostructures, we fabricate these bioinspired absorbers using a scalable, self-assembly patterning technique based on the phase separation of binary polymer mixture. The nanopatterned absorbers achieve a relative integrated absorption increase of 90% at a normal incident angle of light to as high as 200% at large incident angles, demonstrating the potential of black butterfly structures for light-harvesting purposes in thin-film solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...