Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Evol Biol ; 35(5): 680-692, 2022 05.
Article in English | MEDLINE | ID: mdl-35535762

ABSTRACT

Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour in Anolis lizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap coloration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap coloration in the most widespread species of anole, Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation-by-distance did not seem to explain our results. On the other hand, these habitat-specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation-parallel responses across islands-was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.


Subject(s)
Lizards , Animals , Color , Ecosystem , Gene Flow , Lizards/genetics , West Indies
2.
Integr Zool ; 16(3): 379-389, 2021 May.
Article in English | MEDLINE | ID: mdl-33166046

ABSTRACT

Redonda is a small volcanic Caribbean island that is home to at least 4 endemic lizard species, including the Critically Endangered ground lizard (Pholidoscelis atratus). Black rats (Rattus rattus) and domestic goats (Capra hircus) were introduced to the island at some time after its discovery by Europeans in the late 1500s. They had a devastating effect on the island, resulting in the loss of nearly all trees and most of the ground vegetation. Point count surveys of P. atratus in 2012 indicated low densities, and the invasive rats were observed hunting and preying on the lizards. Both populations of rats and goats were successfully removed in 2017 as part of an ecological restoration program, and native vegetation and invertebrate populations have increased rapidly since. Population surveys in 2017, 2018, and 2019 show the lizard population has increased by more than sixfold. In 2017, as rats and goats were being removed, we evaluated the morphology and escape behavior of this species and repeated these measurements 1 year later. We observed that P. atratus had become bolder, with a reduced flight distance. We also detected changes in limb morphology related to locomotion and suggest possible explanations that will need to be further investigated in the future. These results show how the removal of invasive species can rapidly affect lizard population recovery and behavior, potentially restoring island ecosystems to their pre-human interference dynamics.


Subject(s)
Conservation of Natural Resources/methods , Lizards/physiology , Population Density , Animals , Antigua and Barbuda , Behavior, Animal , Endangered Species , Female , Goats , Introduced Species , Lizards/anatomy & histology , Male , Population Dynamics , Rats
3.
Nature ; 560(7716): 88-91, 2018 08.
Article in English | MEDLINE | ID: mdl-30046104

ABSTRACT

Hurricanes are catastrophically destructive. Beyond their toll on human life and livelihoods, hurricanes have tremendous and often long-lasting effects on ecological systems1,2. Despite many examples of mass mortality events following hurricanes3-5, hurricane-induced natural selection has not previously been demonstrated. Immediately after we finished a survey of Anolis scriptus-a common, small-bodied lizard found throughout the Turks and Caicos archipelago-our study populations were battered by Hurricanes Irma and Maria. Shortly thereafter, we revisited the populations to determine whether morphological traits related to clinging capacity had shifted in the intervening six weeks and found that populations of surviving lizards differed in body size, relative limb length and toepad size from those present before the storm. Our serendipitous study, which to our knowledge is the first to use an immediately before and after comparison6 to investigate selection caused by hurricanes, demonstrates that hurricanes can induce phenotypic change in a population and strongly implicates natural selection as the cause. In the decades ahead, as extreme climate events are predicted to become more intense and prevalent7,8, our understanding of evolutionary dynamics needs to incorporate the effects of these potentially severe selective episodes9-11.


Subject(s)
Cyclonic Storms , Disasters , Lizards/anatomy & histology , Selection, Genetic , Animals , Body Size , Extremities/anatomy & histology , Female , Femur/anatomy & histology , Humerus/anatomy & histology , Islands , Male , West Indies
SELECTION OF CITATIONS
SEARCH DETAIL