Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Curr Cancer Drug Targets ; 19(5): 360-367, 2019.
Article in English | MEDLINE | ID: mdl-29968537

ABSTRACT

Polyploidy is associated with increased cell size and is commonly found in a subset of adult organs and blastomere stage of the human embryo. The polyploidy is formed through endoreplication or cell fusion to support the specific need of development including earliest embryogenesis. Recent data demonstrated that Polyploid Giant Cancer Cells (PGCCs) may have acquired an activated early embryonic-like program in response to oncogenic and therapeutic stress to generate reprogrammed cancer cells for drug resistance and metastasis. Targeting PGCCs may open up new opportunities for cancer therapy.


Subject(s)
Carcinogenesis , Giant Cells/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Polyploidy , Animals , Giant Cells/metabolism , Humans , Neoplasms/genetics , Neoplastic Stem Cells/metabolism
2.
Int J Mol Sci ; 18(11)2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29099775

ABSTRACT

The Memorial Sloan Kettering Cancer Center (MSKCC) prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC) patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR) of 0.14, p < 0.0001, 95% confidence interval (CI) 0.04-0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05-0.34) were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only (p < 0.0001). Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , RNA, Messenger/genetics , Transcriptome , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/pathology , Female , Humans , Kidney Neoplasms/blood , Kidney Neoplasms/diagnosis , Kidney Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Prognosis , RNA, Messenger/blood
3.
Onco Targets Ther ; 8: 1915-22, 2015.
Article in English | MEDLINE | ID: mdl-26261420

ABSTRACT

This study tested the potential of circulating RNA-based signals as predictive biomarkers for docetaxel response in patients with metastatic castration-resistant prostate cancer (CRPC). RNA was analyzed in blood from six CRPC patients by whole-transcriptome sequencing (total RNA-sequencing) before and after docetaxel treatment using the Illumina's HiSeq platform. Targeted RNA capture and sequencing was performed in an independent cohort of ten patients with CRPC matching the discovery cohort to confirm differential expression of the genes. Response to docetaxel was defined on the basis of prostate-specific antigen levels and imaging criteria. Two-way analysis of variance was used to compare differential gene expression in patients classified as responders versus nonresponders before and after docetaxel treatment. Thirty-four genes with two-fold differentially expressed transcripts in responders versus nonresponders were selected from total RNA-sequencing for further validation. Targeted RNA capture and sequencing showed that 13/34 genes were differentially expressed in responders. Alpha defensin genes DEFA1, DEFA1B, and DEFA3 exhibited significantly higher expression in responder patients compared with nonresponder patients before administration of chemotherapy (fold change >2.5). In addition, post-docetaxel treatment significantly increased transcript levels of these defensin genes in responders (fold change >2.8). Our results reveal that patients with higher defensin RNA transcripts in blood respond well to docetaxel therapy. We suggest that monitoring DEFA1, DEFA1B, and DEFA3 RNA transcripts in blood prior to treatment will be helpful to determine which patients are better candidates to receive docetaxel chemotherapy.

4.
Mol Cancer Ther ; 13(5): 1067-77, 2014 May.
Article in English | MEDLINE | ID: mdl-24674886

ABSTRACT

Azadirachta indica, commonly known as neem, has gained worldwide prominence because of its medical properties, namely antitumor, antiviral, anti-inflammatory, antihyperglycemic, antifungal, and antibacterial activities. Despite these promising results, gaps remain in our understanding of the molecular mechanism of action of neem compounds and their potential for use in clinical trials. We investigated supercritical extract of neem leaves (SENL) for the following: molecular targets in vitro, in vivo efficacy to inhibit tumor growth, and bioactive compounds that exert antitumor activity. Treatment of LNCaP-luc2 prostate cancer cells with SENL suppressed dihydrotestosterone-induced androgen receptor and prostate-specific antigen levels. SENL inhibited integrin ß1, calreticulin, and focal adhesion kinase activation in LNCaP-luc2 and PC3 prostate cancer cells. Oral administration of SENL significantly reduced LNCaP-luc2 xenograft tumor growth in mice with the formation of hyalinized fibrous tumor tissue, reduction in the prostate-specific antigen, and increase in AKR1C2 levels. To identify the active anticancer compounds, we fractionated SENL by high-pressure liquid chromatography and evaluated 16 peaks for cytotoxic activity. Four of the 16 peaks exhibited significant cytotoxic activity against prostate cancer cells. Mass spectrometry of the isolated peaks suggested the compounds with cytotoxic activity were nimbandiol, nimbolide, 2',3'-dihydronimbolide, and 28-deoxonimbolide. Analysis of tumor tissue and plasma samples from mice treated with SENL indicated 28-deoxonimbolide and nimbolide as the bioactive compounds. Overall, our data revealed the bioactive compounds in SENL and suggested that the anticancer activity could be mediated through alteration in androgen receptor and calreticulin levels in prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Azadirachta/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Prostatic Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Focal Adhesions/drug effects , Humans , Inhibitory Concentration 50 , Male , Mice , Plant Extracts/pharmacokinetics , Plant Extracts/toxicity , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
5.
Clin Cancer Res ; 18(10): 2882-95, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22589488

ABSTRACT

PURPOSE: The aim of this study was to investigate the promoter hypermethylation as diagnostic markers to detect malignant prostate cells and as prognostic markers to predict the clinical recurrence of prostate cancer. EXPERIMENTAL DESIGN: DNA was isolated from prostate cancer and normal adjacent tissues. After bisulfite conversion, methylation of 14,495 genes was evaluated using the Methylation27 microarrays in 238 prostate tissues. We analyzed methylation profiles in four different groups: (i) tumor (n = 198) versus matched normal tissues (n = 40), (ii) recurrence (n = 123) versus nonrecurrence (n = 75), (iii) clinical recurrence (n = 80) versus biochemical recurrence (n = 43), and (iv) systemic recurrence (n = 36) versus local recurrence (n = 44). Group 1, 2, 3, and 4 genes signifying biomarkers for diagnosis, prediction of recurrence, clinical recurrence, and systemic progression were determined. Univariate and multivariate analyses were conducted to predict risk of recurrence. We validated the methylation of genes in 20 independent tissues representing each group by pyrosequencing. RESULTS: Microarray analysis revealed significant methylation of genes in four different groups of prostate cancer tissues. The sensitivity and specificity of methylation for 25 genes from 1, 2, and 4 groups and 7 from group 3 were shown. Validation of genes by pyrosequencing from group 1 (GSTP1, HIF3A, HAAO, and RARß), group 2 (CRIP1, FLNC, RASGRF2, RUNX3, and HS3ST2), group 3 (PHLDA3, RASGRF2, and TNFRSF10D), and group 4 (BCL11B, POU3F3, and RASGRF2) confirmed the microarray results. CONCLUSIONS: Our study provides a global assessment of DNA methylation in prostate cancer and identifies the significance of genes as diagnostic and progression biomarkers of prostate cancer.


Subject(s)
DNA Methylation , DNA, Neoplasm/chemistry , Neoplasm Recurrence, Local/diagnosis , Prostatic Neoplasms/genetics , Biomarkers, Tumor/genetics , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Prognosis , Promoter Regions, Genetic , Prostatic Neoplasms/diagnosis
6.
Article in English | MEDLINE | ID: mdl-22461839

ABSTRACT

Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2',3'-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2',3'-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression.

7.
Adv Prev Med ; 2011: 281863, 2011.
Article in English | MEDLINE | ID: mdl-21991434

ABSTRACT

Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR), and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.

8.
AAPS J ; 13(3): 365-77, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21560017

ABSTRACT

Advanced prostate cancer has significant long-term morbidity, and there is a growing interest in alternative and complimentary forms of therapy that will improve the outcomes of patients. Azadirachta indica (common name: neem) contains multiple active compounds that have potent anti-inflammatory and anticancer properties. The present study investigates the novel targets of the anticancer activity of ethanol extract of neem leaves (EENL) in vitro and evaluates the in vivo efficacy in the prostate cancer models. Analysis of the components in the EENL by mass spectrometry suggests the presence of 2',3'-dehydrosalannol, 6-desacetyl nimbinene, and nimolinone. Treatment of C4-2B and PC-3M-luc2 prostate cancer cells with EENL inhibited the cell proliferation. Genome-wide expression profiling, using oligonucleotide microarrays, revealed genes differentially expressed with EENL treatment in prostate cancer cells. Functional analysis unveiled that most of the up-regulated genes were associated with cell death, and drug metabolism, and the down-regulated genes were associated with cell cycle, DNA replication, recombination, and repair functions. Quantitative PCR confirmed significant up-regulation of 40 genes and immunoblotting revealed increase in the protein expression levels of HMOX1, AKR1C2, AKR1C3, and AKR1B10. EENL treatment inhibited the growth of C4-2B and PC-3M-luc2 prostate cancer xenografts in nude mice. The suppression of tumor growth is associated with the formation of hyalinized fibrous tumor tissue and the induction of cell death by apoptosis. These results suggest that EENL-containing natural bioactive compounds could have potent anticancer property and the regulation of multiple cellular pathways could exert pleiotrophic effects in prevention and treatment of prostate cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Azadirachta/chemistry , Cell Proliferation/drug effects , Gene Expression/drug effects , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Blotting, Western , Gene Expression Profiling , Genome-Wide Association Study , Humans , Male , Mice , Mice, Nude , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Real-Time Polymerase Chain Reaction , Xenograft Model Antitumor Assays
9.
Obstet Gynecol Int ; 2010: 302051, 2010.
Article in English | MEDLINE | ID: mdl-20671914

ABSTRACT

The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

10.
Molecules ; 15(3): 1762-83, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20336012

ABSTRACT

Prostate cancer (PC) is the second most common cancer in men worldwide. Its prevention and treatment remain a challenge to clinicians. Here we review the relationship of vitamins to PC risk. Many vitamins and related chemicals, including vitamin A, retinoids, several B vitamins, vitamin C, vitamin D and vitamin E have shown their anti-cancer activities as anti-oxidants, activators of transcription factors or factors influencing epigenetic events. Although laboratory tests including the use of animal models showed these vitamins may have anti-PC properties, whether they can effectively prevent the development and/or progression of PC in humans remains to be intensively studied subjects. This review will provide up-to-date information regarding the recent outcomes of laboratory, epidemiology and/or clinical trials on the effects of vitamins on PC prevention and/or treatment.


Subject(s)
Prostatic Neoplasms/etiology , Vitamins/adverse effects , Animals , Disease Models, Animal , Humans , Male , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...