Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Psychiatry ; 14: 1249578, 2023.
Article in English | MEDLINE | ID: mdl-37928922

ABSTRACT

Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically heterogeneous condition. Identifying biomarkers of clinically significant metabolic subtypes of autism could improve understanding of its underlying pathophysiology and potentially lead to more targeted interventions. We hypothesized that the application of metabolite-based biomarker techniques using decision thresholds derived from quantitative measurements could identify autism-associated subpopulations. Metabolomic profiling was carried out in a case-control study of 499 autistic and 209 typically developing (TYP) children, ages 18-48 months, enrolled in the Children's Autism Metabolome Project (CAMP; ClinicalTrials.gov Identifier: NCT02548442). Fifty-four metabolites, associated with amino acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-associated metabolites, were quantified using liquid chromatography-tandem mass spectrometry. Using quantitative thresholds, the concentrations of 4 metabolites and 149 ratios of metabolites were identified as biomarkers, each identifying subpopulations of 4.5-11% of the CAMP autistic population. A subset of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and 90% specificity. Many participants were identified by several metabolic biomarkers. Using hierarchical clustering, 30 clusters of biomarkers were created based on participants' biomarker profiles. Metabolic changes associated with the clusters suggest that altered regulation of cellular metabolism, especially of mitochondrial bioenergetics, were common metabolic phenotypes in this cohort of autistic participants. Autism severity and cognitive and developmental impairment were associated with increased lactate, many lactate containing ratios, and the number of biomarker clusters a participant displayed. These studies provide evidence that metabolic phenotyping is feasible and that defined autistic subgroups can lead to enhanced understanding of the underlying pathophysiology and potentially suggest pathways for targeted metabolic treatments.

2.
Autism Res ; 13(8): 1270-1285, 2020 08.
Article in English | MEDLINE | ID: mdl-32558271

ABSTRACT

Autism spectrum disorder (ASD) is biologically and behaviorally heterogeneous. Delayed diagnosis of ASD is common and problematic. The complexity of ASD and the low sensitivity of available screening tools are key factors in delayed diagnosis. Identification of biomarkers that reduce complexity through stratification into reliable subpopulations can assist in earlier diagnosis, provide insight into the biology of ASD, and potentially suggest targeted interventions. Quantitative metabolomic analysis was performed on plasma samples from 708 fasting children, aged 18 to 48 months, enrolled in the Children's Autism Metabolome Project (CAMP). The primary goal was to identify alterations in metabolism helpful in stratifying ASD subjects into subpopulations with shared metabolic phenotypes (i.e., metabotypes). Metabotypes associated with ASD were identified in a discovery set of 357 subjects. The reproducibility of the metabotypes was validated in an independent replication set of 351 CAMP subjects. Thirty-four candidate metabotypes that differentiated subsets of ASD from typically developing participants were identified with sensitivity of at least 5% and specificity greater than 95%. The 34 metabotypes formed six metabolic clusters based on ratios of either lactate or pyruvate, succinate, glycine, ornithine, 4-hydroxyproline, or α-ketoglutarate with other metabolites. Optimization of a subset of new and previously defined metabotypes into a screening battery resulted in 53% sensitivity (95% confidence interval [CI], 48%-57%) and 91% specificity (95% CI, 86%-94%). Thus, our metabolomic screening tool detects more than 50% of the autistic participants in the CAMP study. Further development of this metabolomic screening approach may facilitate earlier referral and diagnosis of ASD and, ultimately, more targeted treatments. LAY SUMMARY: Analysis of a selected set of metabolites in blood samples from children with autism and typically developing children identified reproducible differences in the metabolism of about half of the children with autism. Testing for these differences in blood samples can be used to help screen children as young as 18 months for risk of autism that, in turn, can facilitate earlier diagnoses. In addition, differences may lead to biological insights that produce more precise treatment options. We are exploring other blood-based molecules to determine if still a higher percentage of children with autism can be detected using this strategy. Autism Res 2020, 13: 1270-1285. © 2020 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals LLC.


Subject(s)
Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Metabolomics/methods , Biomarkers/blood , Child, Preschool , Early Diagnosis , Glycine , Humans , Infant , Male , Mass Screening/methods , Metabolome , Reproducibility of Results , Risk
3.
Toxicol Sci ; 174(2): 218-240, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32040181

ABSTRACT

Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.


Subject(s)
Drug Discovery , Heart Diseases/chemically induced , Induced Pluripotent Stem Cells/drug effects , Metabolome , Metabolomics , Myocytes, Cardiac/drug effects , Xenobiotics/toxicity , Biomarkers/metabolism , Cardiotoxicity , Cell Line , Chromatography, Liquid , Dose-Response Relationship, Drug , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Molecular Structure , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Risk Assessment , Structure-Activity Relationship , Tandem Mass Spectrometry , Xenobiotics/chemistry
5.
Biol Psychiatry ; 85(4): 345-354, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30446206

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is behaviorally and biologically heterogeneous and likely represents a series of conditions arising from different underlying genetic, metabolic, and environmental factors. There are currently no reliable diagnostic biomarkers for ASD. Based on evidence that dysregulation of branched-chain amino acids (BCAAs) may contribute to the behavioral characteristics of ASD, we tested whether dysregulation of amino acids (AAs) was a pervasive phenomenon in individuals with ASD. This is the first article to report results from the Children's Autism Metabolome Project (CAMP), a large-scale effort to define autism biomarkers based on metabolomic analyses of blood samples from young children. METHODS: Dysregulation of AA metabolism was identified by comparing plasma metabolites from 516 children with ASD with those from 164 age-matched typically developing children recruited into the CAMP. ASD subjects were stratified into subpopulations based on shared metabolic phenotypes associated with BCAA dysregulation. RESULTS: We identified groups of AAs with positive correlations that were, as a group, negatively correlated with BCAA levels in ASD. Imbalances between these two groups of AAs identified three ASD-associated amino acid dysregulation metabotypes. The combination of glutamine, glycine, and ornithine amino acid dysregulation metabotypes identified a dysregulation in AA/BCAA metabolism that is present in 16.7% of the CAMP subjects with ASD and is detectable with a specificity of 96.3% and a positive predictive value of 93.5% within the ASD subject cohort. CONCLUSIONS: Identification and utilization of metabotypes of ASD can lead to actionable metabolic tests that support early diagnosis and stratification for targeted therapeutic interventions.


Subject(s)
Autism Spectrum Disorder/blood , Glutamine/blood , Glycine/blood , Ornithine/blood , Autism Spectrum Disorder/classification , Autism Spectrum Disorder/diagnosis , Biomarkers/blood , Case-Control Studies , Child, Preschool , Computational Biology , Female , Humans , Infant , Male , Metabolomics , Predictive Value of Tests , Sensitivity and Specificity
6.
Reprod Toxicol ; 73: 350-361, 2017 10.
Article in English | MEDLINE | ID: mdl-28746836

ABSTRACT

The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism.


Subject(s)
Cystine/metabolism , Induced Pluripotent Stem Cells/drug effects , Retinoic Acid Receptor alpha/metabolism , Retinoids/pharmacology , Biological Assay , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Ornithine/metabolism
7.
PLoS One ; 9(11): e112445, 2014.
Article in English | MEDLINE | ID: mdl-25380056

ABSTRACT

BACKGROUND: The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of ASD at an early age. OBJECTIVES: To discover metabolic features present in plasma samples that can discriminate children with ASD from typically developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in larger clinical trials and deployed to guide individualized therapy and treatment. METHODS: Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites. Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features that could distinguish ASD from TD. RESULTS: A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling. Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set. CONCLUSIONS: This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1) determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of therapy, and 4) providing the basis for individualized treatment recommendations.


Subject(s)
Autism Spectrum Disorder/blood , Autism Spectrum Disorder/diagnosis , Biomarkers/blood , Metabolomics/methods , Autism Spectrum Disorder/metabolism , Child , Child, Preschool , Chromatography, Liquid , Female , Gas Chromatography-Mass Spectrometry , Humans , Machine Learning , Male , Mass Spectrometry , Multivariate Analysis , Precision Medicine/methods , Reproducibility of Results , Sensitivity and Specificity
8.
Birth Defects Res B Dev Reprod Toxicol ; 98(4): 343-63, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24123775

ABSTRACT

A metabolic biomarker-based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery-phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure-based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9-point dose-response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.


Subject(s)
Biological Assay/methods , Biomarkers/metabolism , Embryonic Stem Cells/metabolism , Toxicity Tests/methods , Cell Line , Cell Survival/drug effects , Embryonic Development/drug effects , Embryonic Stem Cells/drug effects , Female , Humans , Metabolomics , Models, Biological , Pregnancy , Teratogens/toxicity
9.
Toxicol Appl Pharmacol ; 247(1): 18-27, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20493898

ABSTRACT

Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statistical analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.


Subject(s)
Embryonic Stem Cells/drug effects , Metabolomics , Teratogens/toxicity , Toxicity Tests/methods , Arginine/analogs & derivatives , Arginine/metabolism , Biomarkers/metabolism , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Embryonic Stem Cells/metabolism , Forecasting , Humans , Models, Statistical
10.
Regen Med ; 3(5): 665-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18729791

ABSTRACT

Stemina Biomarker Discovery was established in 2006 to commercialize technology developed by Dr Gabriela Cezar at the University of Wisconsin (WI, USA). Stemina's cell-based assays arise from the strategic convergence of two cutting edge technologies: metabolomics and human embryonic stem (hES) cells. Stemina analyzes the small molecules secreted by hES cells and differentiated cell types such as neural and heart cells derived from hES cells by liquid chromatography mass spectrometry at its state-of-the-art facilities in Madison, WI, USA. Stemina's first technology platform has identified a dynamic set of small molecules in the extracellular secretome of hES cells secreted in response to exposure to a library of known teratogens. Alterations to small molecules in the biochemical pathway(s) of hES cells are mapped in silico to identify biomarkers of toxicity for drug screening and development in an all human system. These small human molecules may then be translated in vivo as biomarkers of toxic response and disease.


Subject(s)
Biotechnology/economics , Biotechnology/trends , Embryonic Stem Cells/cytology , Metabolism , Regenerative Medicine/economics , Regenerative Medicine/trends , Biomarkers/metabolism , Cell Differentiation , Cell Line , Drug Evaluation, Preclinical/instrumentation , Humans , Myocardium/cytology , Neurons/metabolism , Technology, Pharmaceutical/trends , Teratogens/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...