Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 20(1): 213, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32398088

ABSTRACT

BACKGROUND: Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X. index, vector of the Grapevine fanleaf virus (GFLV), was investigated in a backcross progeny between the F1 resistant hybrid material VRH8771 (Vitis-Muscadinia) derived from the muscadine R source 'NC184-4' and V. vinifera cv. 'Cabernet-Sauvignon' (CS). RESULTS: In this pseudo-testcross, parental maps were constructed using simple-sequence repeats markers and single nucleotide polymorphism markers from a GBS approach. For the VRH8771 map, 2271 SNP and 135 SSR markers were assembled, resulting in 19 linkage groups (LG) and an average distance between markers of 0.98 cM. Phylloxera resistance was assessed by monitoring root nodosity number in an in planta experiment and larval development in a root in vitro assay. Nematode resistance was studied using 10-12 month long tests for the selection of durable resistance and rating criteria based on nematode reproduction factor and gall index. A major QTL for phylloxera larval development, explaining more than 70% of the total variance and co-localizing with a QTL for nodosity number, was identified on LG 7 and designated RDV6. Additional QTLs were detected on LG 3 (RDV7) and LG 10 (RDV8), depending on the in planta or in vitro experiments, suggesting that various loci may influence or modulate nodosity formation and larval development. Using a Bulked Segregant Analysis approach and a proportion test, markers clustered in three regions on LG 9, LG 10 and LG 18 were shown to be associated to the nematode resistant phenotype. QTL analysis confirmed the results and QTLs were thus designated respectively XiR2, XiR3 and XiR4, although a LOD-score below the significant threshold value was obtained for the QTL on LG 18. CONCLUSIONS: Based on a high-resolution linkage map and a segregating grapevine backcross progeny, the first QTLs for resistance to D. vitifoliae and to X. index were identified from a muscadine source. All together these results open the way to the development of marker-assisted selection in grapevine rootstock breeding programs based on muscadine derived resistance to phylloxera and to X. index in order to delay GFLV transmission.


Subject(s)
Disease Resistance/genetics , Hemiptera/physiology , Nematoda/physiology , Nepovirus/physiology , Plant Diseases/immunology , Vitis/genetics , Animals , Breeding , Chromosome Mapping , Genetic Linkage , Genotype , Lod Score , Microsatellite Repeats/genetics , Nematoda/virology , Phenotype , Plant Diseases/parasitology , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Vitis/immunology , Vitis/parasitology
2.
Theor Appl Genet ; 126(2): 451-73, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23139142

ABSTRACT

Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R (2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the genetic control of chlorosis tolerance and could aid the development of iron chlorosis-tolerant rootstocks.


Subject(s)
Adaptation, Physiological/physiology , Calcium Compounds/adverse effects , Iron Deficiencies , Oxides/adverse effects , Plant Roots/genetics , Quantitative Trait Loci , Vitis/genetics , Adaptation, Physiological/drug effects , Chlorophyll/metabolism , Chromosome Mapping , Dental Materials/adverse effects , Disease Resistance/genetics , Genes, Plant/genetics , Genetic Markers , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Roots/drug effects , Plant Roots/growth & development , Vitis/drug effects , Vitis/growth & development
3.
Funct Plant Biol ; 39(8): 650-660, 2012 Sep.
Article in English | MEDLINE | ID: mdl-32480816

ABSTRACT

In grapevine (Vitis vinifera L.), rootstocks are known to alter scion development by modifying stem weight and yield. The aim of this work was to evaluate the contribution of primary growth to the rootstock effects on scion biomass. The shoot growth of Vitis vinifera cv. Cabernet Sauvignon N autografted and grafted onto Vitis riparia cv. Riparia Gloire de Montpellier and Vitis berlandieri×V. rupestris cv. 1103 Paulsen was studied in young plants grown in pots trained to one stem in two experiments. Stem elongation and phytomer emergence were studied from grafting until the end of the growth season. The elongation of the Cabernet Sauvignon N leaves, tendrils and internodes of each phytomer along the stem was fitted using sigmoid curves. The rootstocks studied slightly altered the growth dynamics of the leaves, internodes and tendrils of the scion. This is the first study to examine the effect of rootstocks on shoot growth dynamics in any species. The alterations in primary growth were small, suggesting that rootstocks may alter scion biomass principally by modifying secondary growth.

4.
Theor Appl Genet ; 118(7): 1261-78, 2009 May.
Article in English | MEDLINE | ID: mdl-19238349

ABSTRACT

A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon x Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0-34.4 and 28.9-31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14-70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.


Subject(s)
Flowers , Immunity, Innate/genetics , Oomycetes/pathogenicity , Plant Diseases/microbiology , Vitis , Animals , Chromosome Mapping , Chromosomes, Plant , Flowers/anatomy & histology , Flowers/microbiology , Genetic Linkage , Genetic Markers , Humans , Microsatellite Repeats , Phenotype , Polymorphism, Genetic , Quantitative Trait Loci , Sex Determination Processes , Vitis/anatomy & histology , Vitis/genetics , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...