Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(2): 181-188, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352830

ABSTRACT

We have designed and developed novel and selective TLR7 agonists that exhibited potent receptor activity in a cell-based reporter assay. In vitro, these agonists significantly induced secretion of cytokines IL-6, IL-1ß, IL-10, TNFa, IFNa, and IP-10 in human and mouse whole blood. Pharmacokinetic and pharmacodynamic studies in mice showed a significant secretion of IFNα and TNFα cytokines. When combined with aPD1 in a CT-26 tumor model, the lead compound showed strong synergistic antitumor activity with complete tumor regression in 8/10 mice dosed using the intravenous route. Structure-activity relationship studies enabled by structure-based designs of TLR7 agonists are disclosed.

2.
ACS Med Chem Lett ; 15(2): 189-196, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352849

ABSTRACT

Small molecule toll-like receptor (TLR) 7 agonists have gathered considerable interest as promising therapeutic agents for applications in cancer immunotherapy. Herein, we describe the development and optimization of a series of novel TLR7 agonists through systematic structure-activity relationship studies focusing on modification of the phenylpiperidine side chain. Additional refinement of ADME properties culminated in the discovery of compound 14, which displayed nanomolar reporter assay activity and favorable drug-like properties. Compound 14 demonstrated excellent in vivo pharmacokinetic/pharmacodynamic profiles and synergistic antitumor activity when administered in combination with aPD1 antibody, suggesting opportunities of employing 14 in immuno-oncology therapies with immune checkpoint blockade agents.

3.
Org Lett ; 24(31): 5663-5668, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35920644

ABSTRACT

Utilizing quinoline as a mild, catalytic additive, broadly applicable conditions for the Ni/photoredox-catalyzed C(sp2)-C(sp3) cross-coupling of (hetero)aryl bromides and alkyl pinacolboronate esters were developed, which can be applied to both batch and flow reactions. In addition to primary benzylic nucleophiles, both stabilized and nonstabilized secondary alkyl boronic esters are effective coupling partners. Density functional theory calculations suggest that alkyl radical generation occurs from an alkyl-B(pin)-quinoline complex, which may proceed via an energy transfer process.


Subject(s)
Bromides , Quinolines , Catalysis , Esters , Nickel
4.
J Med Chem ; 64(21): 15787-15798, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34704759

ABSTRACT

Inhibition of TGFß signaling in concert with a checkpoint blockade has been shown to provide improved and durable antitumor immune response in mouse models. However, on-target adverse cardiovascular effects have limited the clinical use of TGFß receptor (TGFßR) inhibitors in cancer therapy. To restrict the activity of TGFßR inhibitors to tumor tissues and thereby widen the therapeutic index, a series of tumor-activated prodrugs of a selective small molecule TGFßR1 inhibitor 1 were prepared by appending 1 to a serine protease substrate and a half-life extension fatty acid carbon chain. The prodrugs were shown to be selectively metabolized in tumor tissues relative to the heart and blood and demonstrated a prolonged favorable increase in the tumor-to-heart ratio of the active drug in tissue distribution studies. Once-weekly administration of the most tissue-selective compound 10 provided anti-tumor efficacy comparable to the parent compound and reduced systemic exposure of the active drug.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Prodrugs/therapeutic use , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Area Under Curve , Drug Stability , Female , Half-Life , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Myocardium/metabolism , Neoplasms/metabolism , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Small Molecule Libraries/pharmacology , Tissue Distribution , Xenograft Model Antitumor Assays
5.
Chem Commun (Camb) ; 57(84): 11037-11040, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34608906

ABSTRACT

In recent years, successful assay miniaturization has enabled the exploration of synthesis scale reduction in pharmaceutical discovery. Miniaturization of pharmaceutical synthesis and purification allows a reduction in material consumption and shortens timelines, which ultimately reduces the cost per experiment without compromising data quality. Isolating and purifying the compounds of interest is a key step in the library synthesis process. In this manuscript we describe a high-throughput purification workflow in support of microscale (1-5 µmol or 0.5-2 mg) library synthesis. The optimized microscale purification system can routinely purify 384-well reaction plates with an analysis time of 4 min per sample. Instrument optimization, critical parameters such as column loading, delay time calibration, ultrafast pre- and post-purification analysis and library purification examples are provided.


Subject(s)
High-Throughput Screening Assays/methods , Small Molecule Libraries/isolation & purification , Chromatography, High Pressure Liquid , Miniaturization , Tandem Mass Spectrometry
6.
ACS Med Chem Lett ; 9(11): 1117-1122, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30429955

ABSTRACT

The multifunctional cytokine TGFß plays a central role in regulating antitumor immunity. It has been postulated that inhibition of TGFß signaling in concert with checkpoint blockade will provide improved and durable immune response against tumors. Herein, we describe a novel series of 4-azaindole TGFß receptor kinase inhibitors with excellent selectivity for TGFß receptor 1 kinase. The combination of compound 3f and an antimouse-PD-1 antibody demonstrated significantly improved antitumor efficacy compared to either treatment alone in a murine tumor model.

7.
Bioorg Med Chem Lett ; 27(23): 5267-5271, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29102228

ABSTRACT

Macrocyclic pyrrolobenzodiazepine dimers were designed and evaluated for use as antibody-drug conjugate payloads. Initial structure-activity exploration established that macrocyclization could increase the potency of PBD dimers compared with non-macrocyclic analogs. Further optimization overcame activity-limiting solubility issues, leading to compounds with highly potent (picomolar) activity against several cancer cell lines. High levels of in vitro potency and specificity were demonstrated with an anti-mesothelin conjugate.


Subject(s)
Antibodies/metabolism , Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , Macrocyclic Compounds/pharmacology , Pyrroles/pharmacology , Antibodies/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dimerization , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Solubility , Structure-Activity Relationship
8.
J Org Chem ; 81(21): 10463-10475, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27627106

ABSTRACT

Studies describe formation of the lithium enolate of N-(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α,ß-unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition-state arrangements leading to the formation of Felkin-Anh and anti-Felkin products. Examples illustrate the direct incorporation of monocyclic ß-lactams into a variety of molecular architectures. The utility of 1 as an enolate synthon of homoglycine (ß-alanine) is illustrated by the efficient synthesis of novel ß-amino acid derivatives, including complex 4-hydroxy-2-pyridinones.


Subject(s)
Aldehydes/chemistry , Azetidines/chemistry , Ketones/chemistry , beta-Alanine/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Stereoisomerism
9.
J Med Chem ; 56(20): 7788-803, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24093940

ABSTRACT

The IAPs are key regulators of the apoptotic pathways and are commonly overexpressed in many cancer cells. IAPs contain one to three BIR domains that are crucial for their inhibitory function. The pro-survival properties of XIAP come from binding of the BIR domains to the pro-apoptotic caspases. The BIR3 domain of XIAP binds and inhibits caspase 9, while the BIR2 domain binds and inhibits the terminal caspases 3 and 7. While XIAP BIR3 inhibitors have previously been reported, they also inhibit cIAP1/2 and promote the release of TNFα, potentially limiting their therapeutic utility. This paper will focus on the optimization of selective XIAP BIR2 inhibitors leading to the discovery of highly potent benzodiazepinone 36 (IC50 = 45 nM), which has high levels of selectivity over XIAP BIR3 and cIAP1 BIR2/3 and shows efficacy in a xenograft pharmacodynamic model monitoring caspase activity while not promoting the release of TNFα in vitro.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Alanine/analogs & derivatives , Alanine/chemical synthesis , Alanine/pharmacokinetics , Alanine/pharmacology , Animals , Apoptosis/drug effects , Benzodiazepinones/chemical synthesis , Benzodiazepinones/pharmacokinetics , Benzodiazepinones/pharmacology , Blotting, Western , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Female , Heterocyclic Compounds/pharmacokinetics , Humans , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Mice , Mice, Nude , Models, Chemical , Models, Molecular , Molecular Structure , Protein Structure, Tertiary , Ubiquitin-Protein Ligases , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays
10.
J Med Chem ; 56(20): 7772-87, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24083782

ABSTRACT

XIAP is a key regulator of apoptosis, and its overexpression in cancer cells may contribute to their survival. The antiapoptotic function of XIAP derives from its BIR domains, which bind to and inhibit pro-apoptotic caspases. Most known IAP inhibitors are selective for the BIR3 domain and bind to cIAP1 and cIAP2 as well as XIAP. Pathways activated upon cIAP binding contribute to the function of these compounds. Inhibitors selective for XIAP should exert pro-apoptotic effects through competition with the terminal caspases. This paper details our synthetic explorations of a novel XIAP BIR2-selective benzazepinone screening hit with a focus on increasing BIR2 potency and overcoming high in vivo clearance. These efforts led to the discovery of benzoxazepinone 40, a potent BIR2-selective inhibitor with good in vivo pharmacokinetic properties which potentiates apoptotic signaling in a manner mechanistically distinct from that of known pan-IAP inhibitors.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , X-Linked Inhibitor of Apoptosis Protein/antagonists & inhibitors , Alanine/analogs & derivatives , Alanine/chemical synthesis , Alanine/pharmacokinetics , Alanine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis/drug effects , Blotting, Western , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Female , Heterocyclic Compounds/pharmacokinetics , Humans , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Mice , Mice, Nude , Models, Chemical , Models, Molecular , Molecular Structure , Oxazepines/chemical synthesis , Oxazepines/pharmacokinetics , Oxazepines/pharmacology , Protein Structure, Tertiary , Rats , Ubiquitin-Protein Ligases , X-Linked Inhibitor of Apoptosis Protein/chemistry , X-Linked Inhibitor of Apoptosis Protein/metabolism , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem Lett ; 20(7): 2163-7, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20202838

ABSTRACT

Substituted pyridazino[4,5-b]indolizines were identified as potent and selective PDE4B inhibitors. We describe the structure-activity relationships generated around an HTS hit that led to a series of compounds with low nanomolar affinity for PDE4B and high selectivity over the PDE4D subtype.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Indolizines/chemistry , Indolizines/pharmacology , Phosphodiesterase 4 Inhibitors , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...