Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(38): e2218281120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695900

ABSTRACT

Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain of Escherichia coli (Δfes) to grow in iron-limited medium. Here, we describe the crystal structure of Syn-F4. Syn-F4 forms a dimeric 4-helix bundle. Each monomer comprises two long α-helices, and the loops of the Syn-F4 dimer are on the same end of the bundle (syn topology). Interestingly, there is a penetrated hole in the central region of the Syn-F4 structure. Extensive mutagenesis experiments in a previous study showed that five residues (Glu26, His74, Arg77, Lys78, and Arg85) were essential for enzymatic activity in vivo. All these residues are located around the hole in the central region of the Syn-F4 structure, suggesting a putative active site with a catalytic dyad (Glu26-His74). The complete inactivity of purified proteins with mutations at the five residues supports the putative active site and reaction mechanism. Molecular dynamics and docking simulations of the ferric enterobactin siderophore binding to the Syn-F4 structure demonstrate the dynamic property of the putative active site. The structure and active site of Syn-F4 are completely different from native enterobactin esterase enzymes, thereby demonstrating that proteins designed de novo can provide life-sustaining catalytic activities using structures and mechanisms dramatically different from those that arose in nature.


Subject(s)
Enterobactin , Siderophores , Iron , Iron, Dietary , Catalysis , Electrolytes , Escherichia coli/genetics
2.
Appl Environ Microbiol ; 88(20): e0092222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197102

ABSTRACT

The bacterial exometabolome consists of a vast array of specialized metabolites, many of which are only produced in response to specific environmental stimuli. For this reason, it is desirable to control the extracellular environment with a defined growth medium composed of pure ingredients. However, complex (undefined) media are expected to support the robust growth of a greater variety of microorganisms than defined media. Here, we investigate the trade-offs inherent to a range of complex and defined solid media for the growth of soil microorganisms, production of specialized metabolites, and detection of these compounds using direct infusion mass spectrometry. We find that complex media support growth of more soil microorganisms, as well as allowing for the detection of more previously discovered natural products as a fraction of total m/z features detected in each sample. However, the use of complex media often caused mass spectrometer injection failures and poor-quality mass spectra, which in some cases resulted in over a quarter of samples being removed from analysis. Defined media, while more limiting in growth, generated higher quality spectra and yielded more m/z features after background subtraction. These results inform future exometabolomic experiments requiring a medium that supports the robust growth of many soil microorganisms. IMPORTANCE Bacteria are capable of producing and secreting a rich diversity of specialized metabolites. Yet, much of their exometabolome remains hidden due to challenges associated with eliciting specialized metabolite production, labor-intensive sample preparation, and time-consuming analysis techniques. Using our versatile three-dimensional (3D)-printed culturing platform, SubTap, we demonstrate that rapid exometabolomic data collection from a diverse set of environmental bacteria is feasible. We optimized our platform by surveying Streptomyces isolated from soil on a variety of media types to assess viability, degree of specialized metabolite production, and compatibility with downstream LESA-DIMS analysis. Ultimately, this will enable data-rich experimentation, allowing for a better understanding of bacterial exometabolomes.


Subject(s)
Biological Products , Streptomyces , Mass Spectrometry/methods , Soil/chemistry , Biological Products/chemistry
3.
PLoS Comput Biol ; 18(7): e1010311, 2022 07.
Article in English | MEDLINE | ID: mdl-35849634

ABSTRACT

Antibiotic resistance is an important public health problem. One potential solution is the development of synergistic antibiotic combinations, in which the combination is more effective than the component drugs. However, experimental progress in this direction is severely limited by the number of samples required to exhaustively test for synergy, which grows exponentially with the number of drugs combined. We introduce a new metric for antibiotic synergy, motivated by the popular Fractional Inhibitory Concentration Index and the Highest Single Agent model. We also propose a new experimental design that samples along all appropriately normalized diagonals in concentration space, and prove that this design identifies all synergies among a set of drugs while only sampling a small fraction of the possible combinations. We applied our method to screen two- through eight-way combinations of eight antibiotics at 10 concentrations each, which requires sampling only 2,560 unique combinations of antibiotic concentrations.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial , Drug Synergism , Microbial Sensitivity Tests
4.
Nat Chem Biol ; 14(3): 253-255, 2018 03.
Article in English | MEDLINE | ID: mdl-29334382

ABSTRACT

Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Here we describe Syn-F4, the first de novo protein that meets both criteria. Purified Syn-F4 hydrolyzes the siderophore ferric enterobactin, and expression of Syn-F4 allows an inviable strain of Escherichia coli to grow in iron-limited medium. These findings demonstrate that entirely new sequences can provide life-sustaining enzymatic functions in living organisms.


Subject(s)
Culture Media/chemistry , Enterobactin/chemistry , Escherichia coli/enzymology , Iron/chemistry , Synthetic Biology/methods , Catalysis , Computational Biology , Dimerization , Escherichia coli Proteins/chemistry , Hydrolysis , Kinetics , Mutagenesis , Mutation , Phenotype , Protein Folding , Siderophores/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...