Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Med ; 47(11): 1485-1492, 2019 11.
Article in English | MEDLINE | ID: mdl-31389839

ABSTRACT

OBJECTIVES: Develop and implement a machine learning algorithm to predict severe sepsis and septic shock and evaluate the impact on clinical practice and patient outcomes. DESIGN: Retrospective cohort for algorithm derivation and validation, pre-post impact evaluation. SETTING: Tertiary teaching hospital system in Philadelphia, PA. PATIENTS: All non-ICU admissions; algorithm derivation July 2011 to June 2014 (n = 162,212); algorithm validation October to December 2015 (n = 10,448); silent versus alert comparison January 2016 to February 2017 (silent n = 22,280; alert n = 32,184). INTERVENTIONS: A random-forest classifier, derived and validated using electronic health record data, was deployed both silently and later with an alert to notify clinical teams of sepsis prediction. MEASUREMENT AND MAIN RESULT: Patients identified for training the algorithm were required to have International Classification of Diseases, 9th Edition codes for severe sepsis or septic shock and a positive blood culture during their hospital encounter with either a lactate greater than 2.2 mmol/L or a systolic blood pressure less than 90 mm Hg. The algorithm demonstrated a sensitivity of 26% and specificity of 98%, with a positive predictive value of 29% and positive likelihood ratio of 13. The alert resulted in a small statistically significant increase in lactate testing and IV fluid administration. There was no significant difference in mortality, discharge disposition, or transfer to ICU, although there was a reduction in time-to-ICU transfer. CONCLUSIONS: Our machine learning algorithm can predict, with low sensitivity but high specificity, the impending occurrence of severe sepsis and septic shock. Algorithm-generated predictive alerts modestly impacted clinical measures. Next steps include describing clinical perception of this tool and optimizing algorithm design and delivery.


Subject(s)
Algorithms , Decision Support Systems, Clinical , Diagnosis, Computer-Assisted , Machine Learning , Sepsis/diagnosis , Shock, Septic/diagnosis , Cohort Studies , Electronic Health Records , Hospitals, Teaching , Humans , Retrospective Studies , Sensitivity and Specificity , Text Messaging
2.
Crit Care Med ; 47(11): 1477-1484, 2019 11.
Article in English | MEDLINE | ID: mdl-31135500

ABSTRACT

OBJECTIVE: To assess clinician perceptions of a machine learning-based early warning system to predict severe sepsis and septic shock (Early Warning System 2.0). DESIGN: Prospective observational study. SETTING: Tertiary teaching hospital in Philadelphia, PA. PATIENTS: Non-ICU admissions November-December 2016. INTERVENTIONS: During a 6-week study period conducted 5 months after Early Warning System 2.0 alert implementation, nurses and providers were surveyed twice about their perceptions of the alert's helpfulness and impact on care, first within 6 hours of the alert, and again 48 hours after the alert. MEASUREMENTS AND MAIN RESULTS: For the 362 alerts triggered, 180 nurses (50% response rate) and 107 providers (30% response rate) completed the first survey. Of these, 43 nurses (24% response rate) and 44 providers (41% response rate) completed the second survey. Few (24% nurses, 13% providers) identified new clinical findings after responding to the alert. Perceptions of the presence of sepsis at the time of alert were discrepant between nurses (13%) and providers (40%). The majority of clinicians reported no change in perception of the patient's risk for sepsis (55% nurses, 62% providers). A third of nurses (30%) but few providers (9%) reported the alert changed management. Almost half of nurses (42%) but less than a fifth of providers (16%) found the alert helpful at 6 hours. CONCLUSIONS: In general, clinical perceptions of Early Warning System 2.0 were poor. Nurses and providers differed in their perceptions of sepsis and alert benefits. These findings highlight the challenges of achieving acceptance of predictive and machine learning-based sepsis alerts.


Subject(s)
Algorithms , Attitude of Health Personnel , Decision Support Systems, Clinical , Machine Learning , Sepsis/diagnosis , Shock, Septic/diagnosis , Diagnosis, Computer-Assisted , Electronic Health Records , Hospitals, Teaching , Humans , Medical Staff, Hospital , Nursing Staff, Hospital , Practice Patterns, Nurses'/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Prospective Studies , Text Messaging
3.
Trends Amplif ; 14(3): 164-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21109551

ABSTRACT

The capacity for internal rhythmic clocking involves a relationship between perceived auditory input and subsequent cognitive processing by which isochronous auditory stimuli induce a temporal beat expectancy in a listener. Although rhythm perception has previously been examined in cochlear implant (CI) users through various tasks based primarily on rhythm pattern identification, such tasks may not have been sufficiently nuanced to detect defects in internal rhythmic clocking, which requires temporal integration on a scale of milliseconds. The present study investigated the preservation of such rhythmic clocking in CI participants through a task requiring detection of isochronicity in the final beat of a four-beat series presented at different tempos. Our results show that CI users performed comparably to normal hearing (NH) participants in all isochronous rhythm detection tasks but that professionally trained musicians (MUS) significantly outperformed both NH and CI participants. These results suggest that CI users have intact rhythm perception even on a temporally demanding task that requires tight preservation of timing differences between a series of auditory events. Also, these results suggest that musical training might improve rhythmic clocking in CI users beyond normal hearing levels, which may be useful in light of the deficits in spectral processing commonly observed in CI users.


Subject(s)
Auditory Perception , Cochlear Implantation/instrumentation , Cochlear Implants , Correction of Hearing Impairment/psychology , Music , Periodicity , Time Perception , Acoustic Stimulation , Adult , Aged , Auditory Threshold , Cognition , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
4.
J Acoust Soc Am ; 126(5): EL128-33, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19894787

ABSTRACT

In music, multiple pitches often occur simultaneously, an essential feature of harmony. In the present study, the authors assessed the ability of cochlear implant (CI) users to perceive polyphonic pitch. Acoustically presented stimuli consisted of one, two, or three superposed tones with different fundamental frequencies (f(0)). The normal hearing control group obtained significantly higher mean scores than the CI group. CI users performed near chance levels in recognizing two- and three-pitch stimuli, and demonstrated perceptual fusion of multiple pitches as single-pitch units. These results suggest that limitations in polyphonic pitch perception may significantly impair music perception in CI users.


Subject(s)
Cochlear Implants , Deafness/therapy , Music , Pitch Discrimination/physiology , Psychoacoustics , Acoustic Stimulation , Adult , Aged , Deafness/physiopathology , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...