Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 15(12): e0231561, 2020.
Article in English | MEDLINE | ID: mdl-33275600

ABSTRACT

The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.


Subject(s)
Cerebral Cortex/embryology , Dendrites/metabolism , Receptor, EphA7/metabolism , Animals , Axons/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Dendritic Spines/metabolism , Male , Mice, Inbred C57BL/embryology , Neurons/metabolism , Organogenesis , Protein Isoforms/physiology , Rats , Rats, Sprague-Dawley/embryology , Receptor, EphA7/physiology , Signal Transduction
2.
J Neurosci ; 35(29): 10629-42, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26203155

ABSTRACT

As the cerebral cortex forms, specialized molecular cascades direct the expansion of progenitor pools, the differentiation of neurons, or the maturation of discrete neuronal subtypes, together ensuring that the correct amounts and classes of neurons are generated. In several neural systems, the SoxC transcriptional regulators, particularly Sox11 and Sox4, have been characterized as functioning exclusively and redundantly in promoting neuronal differentiation. Using the mouse cerebral cortex as a model, Sox11 and Sox4 were examined in the formation of the most complex part of the mammalian brain. Anticipated prodifferentiation roles were observed. Distinct expression patterns and mutant phenotypes, however, reveal that Sox11 and Sox4 are not redundant in the cortex, but rather act in overlapping and discrete populations of neurons. In particular, Sox11 acts in early-born neurons; binding to its partner protein, Neurogenin1, leads to selective targeting and transactivation of a downstream gene, NeuroD1. In addition to neuronal expression, Sox4 was unexpectedly expressed in intermediate progenitor cells, the transit amplifying cell of the cerebral cortex. Sox4 mutant analyses reveal a requirement for Sox4 in IPC specification and maintenance. In intermediate progenitors, Sox4 partners with the proneural gene Neurogenin2 to activate Tbrain2 and then with Tbrain2 to maintain this cell fate. This work reveals an intricately structured molecular architecture for SoxC molecules, with Sox11 acting in a select set of cortical neurons and Sox4 playing an unanticipated role in designating secondary progenitors.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/embryology , Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/cytology , Animals , Cells, Cultured , Cerebral Cortex/cytology , Chromatin Immunoprecipitation , Electroporation , Immunohistochemistry , Mice , Mice, Mutant Strains , Neural Stem Cells/physiology , Neurons/metabolism , Real-Time Polymerase Chain Reaction , SOXC Transcription Factors , Transfection
3.
Proc Natl Acad Sci U S A ; 111(13): 4994-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24707048

ABSTRACT

The process by which excitatory neurons are generated and mature during the development of the cerebral cortex occurs in a stereotyped manner; coordinated neuronal birth, migration, and differentiation during embryonic and early postnatal life are prerequisites for selective synaptic connections that mediate meaningful neurotransmission in maturity. Normal cortical function depends upon the proper elaboration of neurons, including the initial extension of cellular processes that lead to the formation of axons and dendrites and the subsequent maturation of synapses. Here, we examine the role of cell-based signaling via the receptor tyrosine kinase EphA7 in guiding the extension and maturation of cortical dendrites. EphA7, localized to dendritic shafts and spines of pyramidal cells, is uniquely expressed during cortical neuronal development. On patterned substrates, EphA7 signaling restricts dendritic extent, with Src and Tsc1 serving as downstream mediators. Perturbation of EphA7 signaling in vitro and in vivo alters dendritic elaboration: Dendrites are longer and more complex when EphA7 is absent and are shorter and simpler when EphA7 is ectopically expressed. Later in neuronal maturation, EphA7 influences protrusions from dendritic shafts and the assembling of synaptic components. Indeed, synaptic function relies on EphA7; the electrophysiological maturation of pyramidal neurons is delayed in cultures lacking EphA7, indicating that EphA7 enhances synaptic function. These results provide evidence of roles for Eph signaling, first in limiting the elaboration of cortical neuronal dendrites and then in coordinating the maturation and function of synapses.


Subject(s)
Cerebral Cortex/metabolism , Dendritic Spines/metabolism , Neurogenesis , Receptor, EphA7/metabolism , Signal Transduction , Animals , Cells, Cultured , Ephrin-A5/metabolism , Excitatory Postsynaptic Potentials , Female , Ligands , Mice , Pyramidal Cells/metabolism , Rats , Synapses/metabolism , Tuberous Sclerosis Complex 1 Protein , Tumor Suppressor Proteins/metabolism , src-Family Kinases/metabolism
4.
Gene Expr Patterns ; 13(8): 454-63, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24036135

ABSTRACT

Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.


Subject(s)
Gene Expression , Receptors, Eph Family/metabolism , Thalamus/metabolism , Animals , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Eph Family/genetics , Signal Transduction , Thalamus/cytology , Thalamus/embryology
5.
Cereb Cortex ; 23(8): 1765-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22744705

ABSTRACT

Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.


Subject(s)
Cerebral Cortex/growth & development , Ephrins/metabolism , Receptor, EphA1/metabolism , Animals , Cerebral Cortex/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , Signal Transduction
6.
Neural Dev ; 6: 21, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21542907

ABSTRACT

BACKGROUND: Neurons form specific connections with targets via synapses and patterns of synaptic connectivity dictate neural function. During development, intrinsic neuronal specification and environmental factors guide both initial formation of synapses and strength of resulting connections. Once synapses form, non-evoked, spontaneous activity serves to modulate connections, strengthening some and eliminating others. Molecules that mediate intercellular communication are particularly important in synaptic refinement. Here, we characterize the influences of EphA4, a transmembrane signaling molecule, on neural connectivity. RESULTS: Using multi-electrode array analysis on in vitro cultures, we confirmed that cortical neurons mature and generate spontaneous circuit activity as cells differentiate, with activity growing both stronger and more patterned over time. When EphA4 was over-expressed in a subset of neurons in these cultures, network activity was enhanced: bursts were longer and were composed of more spikes than in control-transfected cultures. To characterize the cellular basis of this effect, dendritic spines, the major excitatory input site on neurons, were examined on transfected neurons in vitro. Strikingly, while spine number and density were similar between conditions, cortical neurons with elevated levels of EphA4 had significantly more mature spines, fewer immature spines, and elevated colocalization with a mature synaptic marker. CONCLUSIONS: These results demonstrate that experimental elevation of EphA4 promotes network activity in vitro, supporting spine maturation, producing more functional synaptic pairings, and promoting more active circuitry.


Subject(s)
Cerebral Cortex/cytology , Dendritic Spines/physiology , Gene Expression Regulation, Developmental/physiology , Nerve Net/physiology , Neurons/cytology , Receptor, EphA4/metabolism , Action Potentials/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Chlorocebus aethiops , Electrophysiology , Electroporation/methods , Embryo, Mammalian , Green Fluorescent Proteins/genetics , Mice , Receptor, EphA4/genetics , Time Factors , Transfection/methods
7.
Development ; 136(14): 2467-76, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19542359

ABSTRACT

Eph receptors are widely expressed during cerebral cortical development, yet a role for Eph signaling in the generation of cells during corticogenesis has not been shown. Cortical progenitor cells selectively express one receptor, EphA4, and reducing EphA4 signaling in cultured progenitors suppressed proliferation, decreasing cell number. In vivo, EphA4(-/-) cortex had a reduced area, fewer cells and less cell division compared with control cortex. To understand the effects of EphA4 signaling in corticogenesis, EphA4-mediated signaling was selectively depressed or elevated in cortical progenitors in vivo. Compared with control cells, cells with reduced EphA4 signaling were rare and mitotically inactive. Conversely, overexpression of EphA4 maintained cells in their progenitor states at the expense of subsequent maturation, enlarging the progenitor pool. These results support a role for EphA4 in the autonomous promotion of cell proliferation during corticogenesis. Although most ephrins were undetectable in cortical progenitors, ephrin B1 was highly expressed. Our analyses demonstrate that EphA4 and ephrin B1 bind to each other, thereby initiating signaling. Furthermore, overexpression of ephrin B1 stimulated cell division of neighboring cells, supporting the hypothesis that ephrin B1-initiated forward signaling of EphA4 promotes cortical cell division.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Receptor, EphA4/metabolism , Animals , Cell Communication , Cell Proliferation , Cells, Cultured , Cerebral Cortex/cytology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Ephrin-B1/genetics , Ephrin-B1/metabolism , Female , Gene Expression Regulation, Developmental , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Pregnancy , Receptor, EphA4/deficiency , Receptor, EphA4/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction
8.
Mol Cell Neurosci ; 32(1-2): 200-14, 2006.
Article in English | MEDLINE | ID: mdl-16858776

ABSTRACT

Cells of the subplate (SP) and deep cortical plate (CP) are among the pioneer neurons of the developing cerebral cortex, an important group of early-born cells that impact cortical organization and function. Similarities between pioneer neurons in different cortical positions and heterogeneities in pioneer cells in the same cortical location, however, have made it difficult to appreciate the characteristics and functions of particular sets of these cells. Here, we provide a tool to illuminate a unique subset of SP and deep CP neurons: expression of a Tbrain-1 (Tbr1)-driven transgene. Transgene-expressing cells were consistently positive for neuronal but not glial markers, were born early in corticogenesis, representing just a subset of SP and deep CP neurons, were morphologically complex during the formation of the cortex, and were maintained into maturity. This analysis reveals a novel group of pioneer neurons and demonstrates unrecognized diversity within this cortical population. In the future, this information will help to uncover the roles of discrete pioneer populations in cortical development.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/cytology , DNA-Binding Proteins/genetics , Animals , Animals, Newborn , Base Sequence , Biomarkers/metabolism , Cell Lineage/physiology , Cell Movement/physiology , Cell Proliferation , Cells, Cultured , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Green Fluorescent Proteins , Mice , Mice, Transgenic , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Neurons , RNA, Messenger , Stem Cells/cytology , T-Box Domain Proteins , Transgenes/physiology
9.
J Comp Neurol ; 496(5): 627-42, 2006 Jun 10.
Article in English | MEDLINE | ID: mdl-16615124

ABSTRACT

Members of the Eph family of receptor tyrosine kinases and their ligands, the ephrins, are expressed in distinct patterns in the forming cortex. EphA7 is expressed early in cortical development, becoming concentrated in anterior and posterior domains, whereas ephrin-A5 is expressed later in corticogenesis, highest in the middle region that has low levels of EphA7. The EphA7 gene produces full-length and truncated isoforms, which are repulsive and adhesive, respectively. Analysis of cortical RNA expression demonstrates that proportions of these isoforms change with time, from a more repulsive mix during embryogenesis to a more permissive mix postnatally. To examine how EphA7 and ephrin-A5 influence the formation of cortical regions, EphA7-/- mice were analyzed. Within the cortex of EphA7-/- mice, the distribution of ephrin-A5 was more extensive, encompassing its usual medial domain but also extending more posteriorly toward the occipital pole. Moreover, relative levels of ephrin-A5 along the cortex's anatomical axes changed in EphA7-/- animals, creating less striking shifts in ligand abundance. Furthermore, in vivo functional studies revealed that EphA7 exerts a repulsive influence on ephrin-A5-expressing cells during corticogenesis. In contrast, EphA7 appears to mediate permissive interactions in the postnatal cortex: the area of somatosensory cortex was significantly reduced in EphA7-/- mice. A similar reduction was present in ephrin-A5-/- animals and a more pronounced decrease was observed in EphA7/ephrin-A5-/- cortex. Taken together, this study supports a role for EphA7 and ephrin-A5 in the establishment and maintenance of certain cortical domains and suggests that the nature of their interactions changes with cortical maturity.


Subject(s)
Ephrin-A5/physiology , Receptor, EphA7/physiology , Somatosensory Cortex/physiology , Animals , Animals, Newborn , Ephrin-A5/biosynthesis , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Isoforms/biosynthesis , Receptor, EphA7/biosynthesis , Somatosensory Cortex/embryology , Somatosensory Cortex/growth & development , Species Specificity
10.
Mol Cell Neurosci ; 30(4): 538-51, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16188453

ABSTRACT

Cells of the subplate (SP) and deep cortical plate (CP) are among the pioneer neurons of the developing cerebral cortex, an important group of early-born cells that impact cortical organization and function. Similarities between pioneer neurons in different cortical positions and heterogeneities in pioneer cells in the same cortical location, however, have made it difficult to appreciate the characteristics and functions of particular sets of these cells. Here, we provide a tool to illuminate a unique subset of SP and deep CP neurons: expression of a Tbrain-1 (Tbr1)-driven transgene. Transgene-expressing cells were consistently positive for neuronal but not glial markers, were born early in corticogenesis, representing just a subset of SP and deep CP neurons, were morphologically complex during the formation of the cortex, and were maintained into maturity. This analysis reveals a novel group of pioneer neurons and demonstrates unrecognized diversity within this cortical population. In the future, this information will help to uncover the roles of discrete pioneer populations in cortical development.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , DNA-Binding Proteins/genetics , Neurons/metabolism , Stem Cells/metabolism , Animals , Animals, Newborn , Base Sequence , Biomarkers/metabolism , Cell Lineage/physiology , Cell Movement/physiology , Cell Proliferation , Cerebral Cortex/cytology , Gene Expression Regulation, Developmental/physiology , Green Fluorescent Proteins , Mice , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Neurons/cytology , RNA, Messenger/metabolism , Stem Cells/cytology , T-Box Domain Proteins , Transgenes/physiology
11.
J Comp Neurol ; 456(3): 203-16, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12528186

ABSTRACT

Parcellation of the mammalian cerebral cortex into distinct areas is essential for proper cortical function; however, the developmental program that results in the genesis of distinct areas is not fully understood. We examined the expression of members of the EphA family-the EphA receptor tyrosine kinases and the ephrin-A ligands-within the developing mouse cerebral cortex, with the aim of characterizing this component of the molecular landscape during cortical parcellation. We found that specific embryonic zones, such as the ventricular, subventricular, intermediate, subplate, and marginal zones, as well as the cortical plate, were positive for particular EphA genes early in corticogenesis (E12-E15). Along with this zone-selective expression, several genes (EphA3, EphA4, EphA5) were evenly expressed along the axes of the developing cortex, whereas one family member (EphA7) was expressed in a distinct anteroposterior pattern. Later in corticogenesis (E16-E18), other EphA family members became selectively expressed, but only within the cortical plate: EphA6 was present posteriorly, and ephrin-A5 was expressed within a middle region. At birth, patterning of EphA gene expression was striking. Thus, we found that the expression of a single EphA gene or a combination of family members can define distinct embryonic zones and anteroposterior regions of the neocortex during development. To examine whether cellular context affects the patterning of EphA expression, we examined gene expression in embryonic cortical cells grown in vitro, such that all cellular contacts are lacking, and in Mash-1 mutant mice, in which thalamocortical connections do not form. We found that the expression patterns of most EphA family members remained stable in these scenarios, whereas the pattern of ephrin-A5 was altered. Taken together, this work provides a comprehensive picture of EphA family expression during mouse corticogenesis and demonstrates that most EphA expression profiles are cell intrinsically based, whereas ephrin-A5 is plastically regulated.


Subject(s)
Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Receptors, Eph Family/metabolism , Afferent Pathways/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Culture Techniques , Cerebral Cortex/embryology , DNA-Binding Proteins/genetics , Gene Expression , In Situ Hybridization , Mice , Mice, Mutant Strains , Receptor, EphA3/metabolism , Receptor, EphA4/metabolism , Receptor, EphA5/metabolism , Receptor, EphA7/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thalamus/metabolism , Time Factors , Transcription Factors/genetics
12.
J Biol Chem ; 277(13): 11410-5, 2002 Mar 29.
Article in English | MEDLINE | ID: mdl-11777931

ABSTRACT

Recent data have demonstrated that vascular endothelial growth factor (VEGF) is expressed by subsets of neurons, coincident with angiogenesis within the developing cerebral cortex. Here we investigate the characteristics of VEGF expression by neurons and test the hypothesis that VEGF may serve both paracrine and autocrine functions in the developing central nervous system. To begin to address these questions, we assayed expression of VEGF and one of its potential receptors, Flk-1 (VEGFR-2), in the embryonic mouse forebrain and embryonic cortical neurons grown in vitro. Both VEGF and Flk-1 are present in subsets of post-mitotic neurons in vivo and in vitro. Moreover, VEGF levels are up-regulated in neuronal cultures subjected to hypoxia, consistent with our previous results in vivo. While the abundance of Flk-1 is unaffected by hypoxia, the receptor exhibits a higher level of tyrosine phosphorylation, as do downstream signaling kinases, including extracellular signal-regulated protein kinase, p90RSK and STAT3a, demonstrating activation of the VEGF pathway. These same signaling components also exhibited higher tyrosine phosphorylation levels in response to exogenous addition of rVEGFA(165). This activation was diminished in the presence of specific inhibitors of Flk-1 function and agents that sequester VEGF, resulting in a dose-dependent increase in apoptosis in these neuronal cultures. Further, inhibition of MEK resulted in increased apoptosis, while inhibition of phosphatidylinositol 3-kinase had no appreciable affect. In addition to the novel function for VEGF that we describe in neuronal survival, neuronal VEGF also affected the organization and differentiation of brain endothelial cells in a three-dimensional culture paradigm, consistent with its more traditional role as a vascular agent. Thus, our in vitro data support a role for neuronal VEGF in both paracrine and autocrine signaling in the maintenance of neurons and endothelia in the central nervous system.


Subject(s)
Cerebral Cortex/metabolism , Endothelial Growth Factors/physiology , Lymphokines/physiology , MAP Kinase Kinase Kinase 1 , Neurons/metabolism , Animals , Cerebral Cortex/cytology , Endothelial Growth Factors/metabolism , Immunohistochemistry , Lymphokines/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Rats , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Growth Factor/metabolism , Receptors, Vascular Endothelial Growth Factor , Signal Transduction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...