Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Psychoneuroendocrinology ; 164: 107007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503195

ABSTRACT

The endogenous cannabinoid (ECB) system is a small molecule lipid signalling system that is involved in stress response activation and is associated with PTSD, but it is unclear whether salivary ECBs are part of the sympathetic nervous system response to stress. We conducted an adapted trauma film paradigm, where participants completed a cold pressor test (or control) while watching a 10-minute trauma film. We also collected saliva and hair samples and tested them for ECBs, cortisol, and salivary alpha amylase (sAA). As hypothesised, there were significant positive correlations between sAA activity and salivary ECB levels, particularly 2-arachidonoyl glycerol (2-AG), though ECBs were not correlated with sAA stress reactivity. Participants who had a significant cortisol response to the trauma film/stressor reported less intrusive memories, which were also less distressing and less vivid. This effect was moderated by arachidonoyl ethanolamide (AEA), where decreases in AEA post-stress were associated with more intrusive memories in cortisol non-responders only. This study provides new evidence for the role of ECBs in the sympathetic nervous system.


Subject(s)
Arachidonic Acids , Hydrocortisone , Salivary alpha-Amylases , Humans , Endocannabinoids , Polyunsaturated Alkamides , Saliva
2.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38275192

ABSTRACT

Transferrin, a central player in iron transport, has been recognized not only for its role in binding iron but also for its interaction with other metals, including titanium. This study employs solid-state nanopores to investigate the binding of titanium ions [Ti(IV)] to transferrin in a single-molecule and label-free manner. We demonstrate the novel application of solid-state nanopores for single-molecule discrimination between apo-transferrin (metal-free) and Ti(IV)-transferrin. Despite their similar sizes, Ti(IV)-transferrin exhibits a reduced current drop, attributed to differences in translocation times and filter characteristics. Single-molecule analysis reveals Ti(IV)-transferrin's enhanced stability and faster translocations due to its distinct conformational flexibility compared to apo-transferrin. Furthermore, our study showcases solid-state nanopores as real-time monitors of biochemical reactions, tracking the gradual conversion of apo-transferrin to Ti(IV)-transferrin upon the addition of titanium citrate. This work offers insights into Ti(IV) binding to transferrin, promising applications for single-molecule analysis and expanding our comprehension of metal-protein interactions at the molecular level.


Subject(s)
Nanopores , Transferrin , Transferrin/chemistry , Transferrin/metabolism , Titanium/chemistry , Metals , Iron/chemistry , Iron/metabolism
3.
Vaccines (Basel) ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38140203

ABSTRACT

Assaying the potency of inactivated viral influenza vaccines is performed using single radial immunodiffusion, which is the globally accepted release method for potency. Under conditions of a rapidly emerging pandemic, such as the 2009 H1N1 influenza pandemic, a recognized obstacle in the delivery of vaccines to the public is the time needed for the distribution of calibrated SRID reagents (antisera and antigen standards) to vaccine manufacturers. Previously, we first described a novel streamlined MS-based assay, CombE-IDMS, which does not rely on antisera/antibodies or reference antigens, as a potential rapidly deployable alternate potency method through a comparison with SRID on adjuvanted seasonal quadrivalent vaccine cell-based (aQIVc) materials. In this report, we further demonstrate that the CombE-IDMS method can also be applied to measure the potency of pre-pandemic H5N1 and H5N8 monovalent vaccine materials, each subtype both unadjuvanted and adjuvanted, through a forced degradation study. Overall, CombE-IDMS results align with those of the gold standard SRID method on both H5N1 and H5N8 materials under conditions of thermal, pH, oxidative and freeze/thaw stress, lending further evidence for the CombE-IDMS method's suitability as an alternate assay for potency of both seasonal and pandemic influenza vaccines.

4.
Hear Res ; 440: 108918, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992516

ABSTRACT

There is great scientific and public interest in claims that musical training improves general cognitive and perceptual abilities. While this is controversial, recent and rather convincing evidence suggests that musical training refines the temporal integration of auditory and visual stimuli at a general level. We investigated whether musical training also affects integration in the spatial domain, via an auditory localisation experiment that measured ventriloquism (where localisation is biased towards visual stimuli on audiovisual trials) and recalibration (a unimodal localisation aftereffect). While musicians (n = 22) and non-musicians (n = 22) did not have significantly different unimodal precision or accuracy, musicians were significantly less susceptible than non-musicians to ventriloquism, with large effect sizes. We replicated these results in another experiment with an independent sample of 24 musicians and 21 non-musicians. Across both experiments, spatial recalibration did not significantly differ between the groups even though musicians resisted ventriloquism. Our results suggest that the multisensory expertise afforded by musical training refines spatial integration, a process that underpins multisensory perception.


Subject(s)
Music , Sound Localization , Visual Perception , Auditory Perception , Acoustic Stimulation
5.
Biol Psychol ; 184: 108715, 2023 11.
Article in English | MEDLINE | ID: mdl-37852526

ABSTRACT

Fear conditioning is a significant area of research that has featured prominently among the topics published in Biological Psychology over the last 50 years. This work has greatly contributed to our understanding of human anxiety and stressor-related disorders. While mainly conducted in the laboratory, recently, there have been initial attempts to conduct fear conditioning experiments online, with around 10 studies published on the subject, primarily in the last two years. These studies have demonstrated the potential of online fear conditioning research, although challenges to ensure that this research meets the same methodological standards as in-person experimentation remain, despite recent progress. We expect that in the coming years new outcome measures will become available online including the measurement of eye-tracking, pupillometry and probe reaction time and that compliance monitoring will be improved. This exciting new approach opens new possibilities for large-scale data collection among hard-to-reach populations and has the potential to transform the future of fear conditioning research.


Subject(s)
Conditioning, Classical , Fear , Humans , Fear/psychology , Anxiety/psychology , Anxiety Disorders , Reaction Time
6.
Anal Chem ; 95(34): 12842-12850, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37587402

ABSTRACT

The potency of all currently licensed inactivated influenza viral vaccines is assayed by the single radial immunodiffusion (SRID) method. SRID relies upon antisera and reference antigen reagents which are produced, standardized, and distributed in the mass quantities needed for vaccine manufacturers only after a significant amount of time has elapsed from the seasonal strain recommendations issued by the WHO; this time delay is exacerbated under conditions of an emerging pandemic. Previously, the limited trypsin digestion isotope dilution mass spectrometry (LTD-IDMS) method, which does not require antisera or reference antigens, demonstrated comparable quantitation of immunologically active hemagglutinin, the primary viral antigen, to SRID in stressed vaccine materials. Here, we demonstrate a streamlined improvement to the LTD-IDMS method by eliminating the need for its precipitation and washing steps, saving time and labor in the sample preparation process while paving the way for plate-based high-throughput analysis. This is accomplished using dissimilar proteases in the pretreatment (a combination of chymotrypsin and elastase) and analytical (trypsin) digestion steps so that any pretreatment digests will not cause interference while monitoring analytical tryptic digests by IDMS. The combination of enzymes (CombE)-IDMS method is tested alongside LTD-IDMS and SRID for the first time on MF59 adjuvanted seasonal cell-based quadrivalent influenza vaccines (aQIVc) under stressed conditions of heating, oxidation, lowered and elevated pH, and freeze-thaw. Overall, a correlation in the degradation trend is observed between CombE-IDMS and SRID in the four strains of the quadrivalent formulation, highlighting the method's stability indicating capability as a rapid alternate potency assay in a highly complex formulation of aQIVc.


Subject(s)
Influenza Vaccines , Trypsin , Adjuvants, Immunologic , Research Design , Immune Sera
7.
Anal Bioanal Chem ; 415(23): 5671-5680, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442843

ABSTRACT

Islets of Langerhans release peptide hormones in controlled amounts and patterns to ensure proper maintenance of blood glucose levels. The overall release of the hormones is shaped by external factors and by autocrine and paracrine interactions occurring within the islets. To better understand what controls the secretion of islet-secreted peptides, and how these processes go awry in diabetes, methods to monitor the release of multiple hormones simultaneously are needed. While antibody-based assays are typically used, they are most often applied to quantification of a single hormone. Mass spectrometry (MS), on the other hand, is well suited for quantifying multiple hormones simultaneously but typically requires time-consuming separation steps with biological samples. In this report, response surface methodology was used to identify a set of optimal solid-phase extraction (SPE) conditions for the islet-secreted peptides, insulin, C-peptide, glucagon, and somatostatin. The optimized SPE method was used with multiple reaction monitoring and isotopically labeled standards to quantify secretion levels. Calibrations were linear from 0.5 to 50 nM with < 15% RSD peak area ratios. A microfluidic system was used to perfuse 30 human islets with different glucose conditions, and fractions were collected every 2 min for SPE-MS analysis. Results showed the release dynamics of the individual peptides, as well as patterns, such as positively and negatively correlated release and oscillations. This rapid SPE-MS method is expected to be useful for examining other peptide and small-molecule secretions from islets and could be applied to a number of other biological systems for investigating cellular communication.


Subject(s)
Islets of Langerhans , Humans , Insulin/analysis , Glucagon , Peptides/analysis , Mass Spectrometry , Glucose/analysis
8.
Electrophoresis ; 44(1-2): 349-359, 2023 01.
Article in English | MEDLINE | ID: mdl-36401829

ABSTRACT

A nanopore device is capable of providing single-molecule level information of an analyte as they translocate through the sensing aperture-a nanometer-sized through-hole-under the influence of an applied electric field. In this study, a silicon nitride (Six Ny )-based nanopore was used to characterize the human serum transferrin receptor protein (TfR) under various applied voltages. The presence of dimeric forms of TfR was found to decrease exponentially as the applied electric field increased. Further analysis of monomeric TfR also revealed that its unfolding behaviors were positively dependent on the applied voltage. Furthermore, a comparison between the data of monomeric TfR and its ligand protein, human serum transferrin (hSTf), showed that these two protein populations, despite their nearly identical molecular weights, could be distinguished from each other by means of a solid-state nanopore (SSN). Lastly, the excluded volumes of TfR were experimentally determined at each voltage and were found to be within error of their theoretical values. The results herein demonstrate the successful application of an SSN for accurately classifying monomeric and dimeric molecules while the two populations coexist in a heterogeneous mixture.


Subject(s)
Nanopores , Transferrin , Humans , Ligands , Receptors, Transferrin/metabolism
9.
Sci Rep ; 12(1): 15292, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097277

ABSTRACT

When the brain is exposed to a temporal asynchrony between the senses, it will shift its perception of simultaneity towards the previously experienced asynchrony (temporal recalibration). It is unknown whether recalibration depends on how accurately an individual integrates multisensory cues or on experiences they have had over their lifespan. Hence, we assessed whether musical training modulated audiovisual temporal recalibration. Musicians (n = 20) and non-musicians (n = 18) made simultaneity judgements to flash-tone stimuli before and after adaptation to asynchronous (± 200 ms) flash-tone stimuli. We analysed these judgements via an observer model that described the left and right boundaries of the temporal integration window (decisional criteria) and the amount of sensory noise that affected these judgements. Musicians' boundaries were narrower (closer to true simultaneity) than non-musicians', indicating stricter criteria for temporal integration, and they also exhibited enhanced sensory precision. However, while both musicians and non-musicians experienced cumulative and rapid recalibration, these recalibration effects did not differ between the groups. Unexpectedly, cumulative recalibration was caused by auditory-leading but not visual-leading adaptation. Overall, these findings suggest that the precision with which observers perceptually integrate audiovisual temporal cues does not predict their susceptibility to recalibration.


Subject(s)
Auditory Perception , Music , Acoustic Stimulation , Photic Stimulation , Visual Perception
10.
Neurosci Biobehav Rev ; 139: 104756, 2022 08.
Article in English | MEDLINE | ID: mdl-35779627

ABSTRACT

Some previous research has shown stronger acquisition and impaired extinction of fear conditioned to angry or fearful compared to happy or neutral face conditional stimuli (CS) - a difference attributed to biological 'preparedness'. A systematic review and meta-analysis of fear conditioning studies comparing face CSs of differing expressions identified thirty studies, eighteen of which were eligible for meta-analysis. Skin conductance responses were larger to angry or fearful faces compared to happy or neutral faces during habituation, acquisition and extinction. Significant differences in differential conditioning between angry, fearful, neutral, and happy face CSs were also found, but differences were more prominent between angry and neutral faces compared to angry/fearful and happy faces. This is likely due to lower arousal elicited by neutral compared to happy faces, which may be more salient as CSs. The findings suggest there are small to moderate differences in differential conditioning when angry or fearful compared to happy or neutral faces are used as CSs. These findings have implications for fear conditioning study design and the preparedness theory.


Subject(s)
Anger , Facial Expression , Arousal , Fear/physiology , Happiness , Humans
11.
Anal Methods ; 14(21): 2100-2107, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35567801

ABSTRACT

Islets of Langerhans are the endocrine tissue within the pancreas that secrete hormones for maintenance of blood glucose homeostasis. A variety of small molecules including classical neurotransmitters are also released from islets. While the roles of most of these small molecules are unknown, some have been hypothesized to play a critical role in islet physiology. To better understand their role on islet function, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to separate and quantify 39 small molecules released from islets. Benzoyl chloride derivatization of analyte molecules was used to impart retention and facilitate electrospray ionization efficiency. Separation was achieved on a 2.1 × 150 mm column packed with 2.7 µm core-shell C18 particles. Calibration curves showed excellent linearity between the concentration and analyte response, with relative standard deviations of the analyte responses below 15% and limits of detection from 0.01-40 nM. The method was applied to examine small molecules released from murine and human islets of Langerhans after static incubation and perfusion with glucose. Results showed a decrease in secretion rates with increasing glucose concentration for most of the analytes. Secretion rates were found to be higher in human islets compared to their murine counterpart. This method will be useful in understanding the roles of small molecules in biological systems.


Subject(s)
Islets of Langerhans , Tandem Mass Spectrometry , Animals , Blood Glucose , Chromatography, Liquid/methods , Glucose , Humans , Mice
12.
J Chromatogr A ; 1637: 461805, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33360778

ABSTRACT

Glucose homeostasis is maintained through the secretion of peptide hormones, such as insulin, somatostatin, and glucagon, from islets of Langerhans, clusters of endocrine cells found in the pancreas. This report describes an LC-MS method using multiple reaction monitoring for quantitation of insulin, C-peptide, glucagon, and somatostatin secretion from human islet populations. For rapid analysis, a 5 min separation was achieved using a 2.1 × 30 mm (i.d. x length) C18 column with 2.7 µm diameter core shell particles. A sacrificial protein hydrolysate was used with the sample and found to improve signal magnitude, repeatability, and to reduce carryover between runs. At optimized gradient conditions, the gradient run time was 4.55 min producing an average peak width of 0.3 min, a minimum resolution of 1.2, and a peak capacity of 20. As a proof of concept, the method was used to measure secretions from static incubations of human islets from 2 donors. Insulin and C-peptide were quantified and matched well with literature values of these hormones. We expect that this antibody-free quantitation of multiple hormones secreted from islets will provide insights into the temporal relationships of these peptides in the future.


Subject(s)
Blood Glucose/metabolism , Chromatography, Liquid/methods , Glucagon/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Mass Spectrometry/methods , Somatostatin/metabolism , Humans , Reproducibility of Results
13.
Biophys J ; 119(2): 389-401, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32621866

ABSTRACT

Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and ß-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.


Subject(s)
Light Signal Transduction , Rod Opsins , Animals , Light , Mice , Phosphorylation , Retinal Ganglion Cells/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism
14.
Anal Chem ; 92(12): 8464-8471, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32429660

ABSTRACT

Pulsatile insulin from pancreatic islets is crucial for glucose homeostasis, but the mechanism behind coordinated pulsatility is still under investigation. One hypothesis suggests that cholinergic stimulation of islets by pancreatic ganglia resets these endocrine units, producing synchronization. Previously, it was shown that intracellular Ca2+ oscillations within islets can be entrained by pulses of a cholinergic agonist, carbachol (CCh). Although these proxy measurements of Ca2+ provided insight into the synchronization mechanism, measurement of insulin output would be more direct evidence. To this end, a fluorescence anisotropy competitive immunoassay for online insulin detection from single and grouped islets in a microfluidic system was developed using a piezoelectric pressure-driven fluid delivery system and a squaraine rotaxane fluorophore, SeTau-647, as the fluorescent label for insulin. Due to SeTau-647 having a longer lifetime and higher brightness compared to the previously used Cy5 fluorophore, a 45% increase in the anisotropy range was observed with enhanced signal-to-noise ratio (S/N) of the measurements. This new system was tested by measuring glucose-stimulated insulin secretion from single and groups of murine and human islets. Distinct islet entrainment of groups of murine islets by pulses of CCh was also observed, providing further evidence for the hypothesis that pulsatile output from the ganglia can synchronize islet behavior. We expect that this relatively straightforward, homogeneous assay can be widely used for examining not only insulin secretion but other secreted factors from different tissues.


Subject(s)
Fluorescent Dyes/metabolism , Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Receptor, Muscarinic M3/metabolism , Cells, Cultured , Fluorescent Dyes/chemistry , Glucose/chemistry , Humans , Insulin Secretion , Islets of Langerhans/cytology , Lab-On-A-Chip Devices , Temperature
15.
J Magn Reson ; 288: 28-36, 2018 03.
Article in English | MEDLINE | ID: mdl-29414061

ABSTRACT

We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

16.
J Mol Biol ; 429(12): 1903-1920, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28501588

ABSTRACT

Oligomerization of membrane proteins is common in nature. Here, we combine spin-labeling double electron-electron resonance (DEER) and solid-state NMR (ssNMR) spectroscopy to refine the structure of an oligomeric integral membrane protein, Anabaena sensory rhodopsin (ASR), reconstituted in a lipid environment. An essential feature of such a combined approach is that it provides structural distance restraints spanning a range of ca 3-60Å while using the same sample preparation (i.e., mutations, paramagnetic labeling, and reconstitution in lipid bilayers) for both ssNMR and DEER. Direct modeling of the multispin effects on DEER signal allowed for the determination of the oligomeric order and for obtaining long-range DEER distance restraints between the ASR trimer subunits that were used to refine the ssNMR structure of ASR. The improved structure of the ASR trimer revealed a more compact packing of helices and side chains at the intermonomer interface, compared to the structure determined using the ssNMR data alone. The extent of the refinement is significant when compared with typical helix movements observed for the active states of homologous proteins. Our combined approach of using complementary DEER and NMR measurements for the determination of oligomeric structures would be widely applicable to membrane proteins where paramagnetic tags can be introduced. Such a method could be used to study the effects of the lipid membrane composition on protein oligomerization and to observe structural changes in protein oligomers upon drug, substrate, and co-factor binding.


Subject(s)
Anabaena/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Multimerization , Sensory Rhodopsins/chemistry , Sensory Rhodopsins/metabolism , Magnetic Resonance Spectroscopy , Models, Biological , Models, Molecular
17.
Proteins ; 82(12): 3327-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25204809

ABSTRACT

Multiple MD simulations were performed for the full-length wild-type A1, the full length A1 mutations S27E and S27A, as well as the N-terminal peptide (AMVSEFLKQAWFIDNEEQEYIKTVKGS²7KGGPGSAVSPYPTFN) of wild-type A1 and mutations S27E and S27A. The MD simulation trajectories of about 350 ns were generated and analyzed to examine the changes of core domain calcium binding affinity, core domain and N-terminal domain structures, and N-terminal domain orientation. Our results indicated that S27A and S27E mutations caused little changes on the calcium-binding affinity of the core domain of A1. However, the S27A mutation made the N-terminal domain of A1 less helical, and made the N-terminal domain migrate faster toward the core domain; these impacts on A1 are beneficial to the membrane aggregation process. On the contrary, the S27E mutation made the N-terminal domain of A1 more stable, and hindered the migration to the core domain; these changes on A1 are antagonistic for the membrane aggregation process. Our results using MD simulations provide an atomistic explanation for experimental observations that the S27E mutant showed a higher calcium concentration requirement and lower maximal extent of aggregation, while the wild-type and two mutants S27E and S27A required identical calcium concentrations for liposome binding.


Subject(s)
Annexin A1/chemistry , Calcium Signaling , Membrane Fusion , Models, Molecular , Protein Processing, Post-Translational , Serine/metabolism , Amino Acid Substitution , Animals , Annexin A1/genetics , Annexin A1/metabolism , Calcium/metabolism , Cluster Analysis , Databases, Protein , Liposomes , Molecular Dynamics Simulation , Mutation , Phosphorylation , Protein Conformation , Protein Stability , Protein Structure, Tertiary , Serine/chemistry , Sus scrofa
18.
Proteins ; 82(11): 2936-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24913225

ABSTRACT

Annexin A1 has been shown to cause membrane aggregation and fusion, yet the mechanism of these activities is not clearly understood. In this work, molecular dynamics simulations were performed on monomeric annexin A1 positioned between two negatively charged monolayers using AMBER's all atom force field to gain insight into the mechanism of fusion. Each phospolipid monolayer was made up of 180 DOPC molecules and 45 DOPG molecules to achieve a 4:1 ratio. The space between the two monolayers was explicitly solvated using TIP3P waters in a rectilinear box. The constructed setup contained up to 0.14 million atoms. Application of periodic boundary conditions to the simulation setup gave the desired effect of two continuous membrane bilayers. Nonbonded interactions were calculated between the N-terminal residues and the bottom layer of phospholipids, which displayed a strong attraction of K26 and K29 to the lipid head-groups. The side-chains of these two residues were observed to orient themselves in close proximity (∼3.5 Å) with the polar head-groups of the phospholipids.


Subject(s)
Annexin A1/chemistry , Annexin A1/metabolism , Cell Membrane/metabolism , Binding Sites , Lysine/chemistry , Membrane Fusion , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Protein Structure, Tertiary , Static Electricity
19.
J Biol Chem ; 288(38): 26987-27001, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23897835

ABSTRACT

In Escherichia coli and the majority of ß- and γ-proteobacteria, the fourth step of lipid A biosynthesis, i.e. cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN, is carried out by LpxH. LpxH has been previously suggested to contain signature motifs found in the calcineurin-like phosphoesterase (CLP) family of metalloenzymes; however, it cleaves a pyrophosphate bond instead of a phosphoester bond, and its substrate contains nucleoside diphosphate moieties more common to the Nudix family rather than to the CLP family. Furthermore, the extent of biochemical data fails to demonstrate a significant level of metal activation in enzymatic assays, which is inconsistent with the behavior of a metalloenzyme. Here, we report cloning, purification, and detailed enzymatic characterization of Haemophilus influenzae LpxH (HiLpxH). HiLpxH shows over 600-fold stimulation of hydrolase activity in the presence of Mn(2+). EPR studies reveal the presence of a Mn(2+) cluster in LpxH. Finally, point mutants of residues in the conserved metal-binding motifs of the CLP family greatly inhibit HiLpxH activity, highlighting their importance in enzyme function. Contrary to previous analyses of LpxH, we find HiLpxH does not obey surface dilution kinetics. Overall, our work unambiguously establishes LpxH as a calcineurin-like phosphoesterase containing a Mn(2+) cluster coordinated by conserved residues. These results set the scene for further structural investigation of the enzyme and for design of novel antibiotics targeting lipid A biosynthesis.


Subject(s)
Bacterial Proteins/chemistry , Haemophilus influenzae/enzymology , Lipid A/biosynthesis , Manganese/chemistry , Pyrophosphatases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Catalysis , Cloning, Molecular , Gene Expression , Haemophilus influenzae/genetics , Lipid A/chemistry , Lipid A/metabolism , Manganese/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/isolation & purification , Pyrophosphatases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...