Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38798461

ABSTRACT

Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Further, we confirm the presence of alkaloids in two putatively non-toxic frogs from other families. Our data suggest the existence of a phenotypic intermediate between toxin consumption and sequestration-passive accumulation-that differs from active sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms.

2.
Mol Ecol ; 33(11): e17360, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656687

ABSTRACT

Connectivity is a fundamental process of population dynamics in marine ecosystems. In the last decade, with the emergence of new methods, combining different approaches to understand the patterns of connectivity among populations and their regulation has become increasingly feasible. The Western Antarctic Peninsula (WAP) is characterized by complex oceanographic dynamics, where local conditions could act as barriers to population connectivity. Here, the notothenioid fish Harpagifer antarcticus, a demersal species with a complex life cycle (adults with poor swim capabilities and pelagic larvae), was used to assess connectivity along the WAP by combining biophysical modelling and population genomics methods. Both approaches showed congruent patterns. Areas of larvae retention and low potential connectivity, observed in the biophysical model output, coincide with four genetic groups within the WAP: (1) South Shetland Islands, (2) Bransfield Strait, (3) the central and (4) the southern area of WAP (Marguerite Bay). These genetic groups exhibited limited gene flow between them, consistent with local oceanographic conditions, which would represent barriers to larval dispersal. The joint effect of geographic distance and larval dispersal by ocean currents had a greater influence on the observed population structure than each variable evaluated separately. The combined effect of geographic distance and a complex oceanographic dynamic would be generating limited levels of population connectivity in the fish H. antarcticus along the WAP. Based on this, population connectivity estimations and priority areas for conservation were discussed, considering the marine protected area proposed for this threatened region of the Southern Ocean.


Subject(s)
Gene Flow , Genetics, Population , Animals , Antarctic Regions , Population Dynamics , Perciformes/genetics , Genomics , Ecosystem , Larva/genetics , Fishes/genetics
3.
Nat Plants ; 10(5): 760-770, 2024 May.
Article in English | MEDLINE | ID: mdl-38609675

ABSTRACT

Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.


Subject(s)
Herbivory , Soil , Soil/chemistry , Plants , Ecosystem , Desert Climate , Animals
5.
Ecol Evol ; 14(2): e10879, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343567

ABSTRACT

Stingless bees are important pollinators in tropical forests. Yet, we know little about their foraging behavior (e.g., their nutritional requirements or their floral sources visited for resource collection). Many stingless bees not only depend vitally on pollen and nectar for food but also on resin for nest building and/or defense. However, it is unclear whether the large effort devoted to collecting resin as a non-food resource by certain stingless bees affects their foraging behavior. Therefore, in this study, we analyzed differences in foraging patterns (i.e., foraging activity, proportion of collected resources, and specialization in plants visited) and resource nutritional composition (i.e., sucrose amount in nectar and amino acids in pollen) of seven different stingless bee species (eleven wild colonies) in north-western Ecuador with a particular focus on the role of resin collection. We found that species with a high resin intake tended to be more active than species with a low resin intake. The foragers per minute invested for pollen collection were similar across all species. Sucrose intake per minute differed between some species but was not affected by increased resin intake. Interestingly, high and low resin collectors partly differed in the plants visited for pollen collection. Pollen amino acid profiles largely, but not completely, overlapped between the two resin collection groups. Our findings show that the foraging patterns and plant choices of stingless bees may vary depending on their resin intake, highlighting the need for more research focusing on resin collection and use by stingless bees.


Las abejas sin aguijón son polinizadores importantes en los bosques tropicales. Sin embargo, sabemos poco acerca de su comportamiento de forrajeo (e.g., sus requisitos nutricionales o las fuentes florales visitadas para la recolección de recursos). Muchas abejas sin aguijón dependen vitalmente no solo de polen y de néctar como alimento, sino también de resinas para la construcción de su nido y/o defensa. Sin embargo, no está claro si el gran esfuerzo dedicado a la recolección de resina como recurso no alimentario de ciertas abejas sin aguijón afecta su comportamiento de forrajeo. Por lo tanto, en este estudio, analizamos las diferencias en los patrones de forrajeo (i.e., actividad de forrajeo, proporción de recursos recolectados y especialización en las plantas visitadas) y la composición nutricional de los recursos recolectados (i.e., cantidad de sacarosa en el néctar y de aminoácidos en el polen) de siete especies diferentes de abejas sin aguijón (once colonias silvestres) en el noroeste de Ecuador, con un enfoque particular en el rol de la recolección de resina. Encontramos que las especies con una recolección alta de resina tienden a ser más activas que las especies con una recolección baja de resina. La cantidad de forrajeadores por minuto dedicada a la recolección de polen fue similar en todas las especies. La ingesta de sacarosa por minuto difirió entre algunas especies, pero no se vio afectada por un aumento en la recolección de resina. Interesantemente, las abejas con una recolección alta y baja de resina difirieron parcialmente en las plantas que visitaron para la recolección de polen. Entre los dos grupos de recolección de resina también hubo diferencias con respecto al perfil de aminoácidos en el polen que recolectaron. El perfil de aminoácidos se sobrelapaba, pero no completamente, entre los dos grupos. Nuestros resultados muestran que los patrones de forrajeo y las elecciones de plantas de las abejas sin aguijón pueden variar según su consumo de resina, destacando la necesidad de hacer más investigaciones centradas en la recolección y el uso de resina por parte de las abejas sin aguijón.

7.
PLoS One ; 18(11): e0288276, 2023.
Article in English | MEDLINE | ID: mdl-37934765

ABSTRACT

In tropical forests, herbivorous arthropods remove between 7% up to 48% of leaf area, which has forced plants to evolve defense strategies. These strategies influence the palatability of leaves. Palatability, which reflects a syndrome of leaf traits, in turn influences both the abundance and the mean body mass not only of particular arthropod taxa but also of the total communities. In this study, we tested two hypotheses: (H1) The abundance of two important chewer guilds ('leaf chewers' and 'rostrum chewers'), dominant components of arthropod communities, is positively related to the palatability of host trees. (H2) Lower palatability leads to an increased mean body mass of chewers (Jarman-Bell principle). Arthropods were collected by fogging the canopies of 90 tropical trees representing 31 species in three plots at 1000 m and three at 2000 m a.s.l. Palatability was assessed by measuring several 'leaf traits' of each host tree and by conducting a feeding trial with the generalist herbivore Gryllus assimilis (Orthoptera, Gryllidae). Leaf traits provided partial support for H1, as abundance of leaf chewers but not of rostrum chewers was positively affected by the experimentally estimated palatability. There was no support for H2 as neither leaf traits nor experimentally estimated palatability affected the mean body mass of leaf chewers. The mean body mass of rostrum chewers was positively related to palatability. Thus, leaf traits and experimentally estimated palatability influenced the abundance and mean body mass of chewing arthropods on the community level. However, the data were not consistent with the Jarman-Bell principle. Overall, our results suggest that the palatability of leaves is not among the dominant factors influencing abundance and mean body mass of the community of chewing arthropod herbivores. If other factors, such as the microclimate, predation or further (a-)biotic interactions are more important has to be analyzed in refined studies.


Subject(s)
Arthropods , Trees , Animals , Herbivory , Forests , Plant Leaves
8.
Nat Commun ; 14(1): 6191, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848442

ABSTRACT

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.


Subject(s)
Deep Learning , Animals , Tropical Climate , Forests , Biodiversity , Trees , Ecosystem , Conservation of Natural Resources
9.
Zookeys ; 1169: 15-45, 2023.
Article in English | MEDLINE | ID: mdl-37457653

ABSTRACT

This work updates the invertebrate type specimen catalog published by Donoso et al. (2009). The catalog is increased by 2281 type specimens (from 454 species or subspecies) to a total of 4180 type specimens (from 770 species or subspecies) hosted at the Pontificia Universidad Católica del Ecuador and Escuela Politécnica Nacional natural history collections. The new material adds 307 holotypes, 1910 paratypes, and 64 allotypes. It provides original information from four phyla (Arthropoda, Mollusca, Nemata, and Platyhelminthes), eight classes, 21 orders, 73 families, and 156 genera. This updated catalog includes a map showing the type localities in the country, a list of the 71 new type specimens (from 23 species or subspecies) from other countries hosted at both museums, corrections to the previous catalog published by Donoso et al. (2009), and label information from each new specimen.

10.
Medicina (Kaunas) ; 59(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36837449

ABSTRACT

Scleroderma or systemic sclerosis (SSc) is an autoimmune disease affecting the connective tissue, characterized by fibrosis of the skin and internal organs. There is currently no curative treatment available, so therapeutic action is aimed at a symptomatic treatment of the affected organs. The development of biotechnology has made it possible to implement certain biological drugs that could represent a window of opportunity to modulate the evolution and symptomatology of scleroderma with greater efficacy and less toxicity than conventional treatments. This study aimed to review the current evidence critically and systematically on the effects of biological drugs on the pulmonary function, skin disease, and health status of patients afflicted by diffuse cutaneous systemic sclerosis (dcSSc). Three electronic databases (Pubmed, Dialnet, and Cochrane Library Plus) were systematically searched until the cut-off date of October 2022. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and included original articles in English and Spanish with a controlled trial design, comparing biological drug treatments (tocilizumab, belimumab, riociguat, abatacept, and romilkimab) with a control group. The methodological quality of the studies was assessed using the McMaster quantitative form and the PEDro scale. A total of 383 studies were identified, 6 of them met the established criteria and were included in the present systematic review. A total of 426 patients treated with tocilizumab, belimumab, riociguat, abatacept, and romilkimab were included. The results showed substantial non-significant (p < 0.05) improvement trends after treatment with the biological drugs included in this review for the modified Rodnan Scale Value, Forced Vital Capacity, and Carbon Monoxide Diffusion Test; however, no benefits were shown on the Health Assessment Questionnaire-Disability Index when compared to the control group. Biological drugs, therefore, maybe a new therapeutic strategy for dcSSc and could be recommended as an additional and/or adjunctive treatment that promotes anti-fibrotic activity. This review could further define the clinical rationale for the use of biologics in the treatment of dcSSc and could provide key details on the study protocol, design, and outcome reporting.


Subject(s)
Biological Products , Scleroderma, Diffuse , Scleroderma, Systemic , Humans , Scleroderma, Diffuse/drug therapy , Abatacept/therapeutic use , Biological Products/therapeutic use , Scleroderma, Systemic/drug therapy , Antibodies, Monoclonal/therapeutic use , Fibrosis
11.
J Anim Ecol ; 92(7): 1372-1387, 2023 07.
Article in English | MEDLINE | ID: mdl-36748273

ABSTRACT

Microhabitat differentiation of species communities such as vertical stratification in tropical forests contributes to species coexistence and thus biodiversity. However, little is known about how the extent of stratification changes during forest recovery and influences community reassembly. Environmental filtering determines community reassembly in time (succession) and in space (stratification), hence functional and phylogenetic composition of species communities are highly dynamic. It is poorly understood if and how these two concurrent filters-forest recovery and stratification-interact. In a tropical forest chronosequence in Ecuador spanning 34 years of natural recovery, we investigated the recovery trajectory of ant communities in three overlapping strata (ground, leaf litter, lower tree trunk) by quantifying 13 traits, as well as the functional and phylogenetic diversity of the ants. We expected that functional and phylogenetic diversity would increase with recovery time and that each ant community within each stratum would show a distinct functional reassembly. We predicted that traits related to ant diet would show divergent trajectories reflecting an increase in niche differentiation with recovery time. On the other hand, traits related to the abiotic environment were predicted to show convergent trajectories due to a more similar microclimate across strata with increasing recovery age. Most of the functional traits and the phylogenetic diversity of the ants were clearly stratified, confirming previous findings. However, neither functional nor phylogenetic diversity increased with recovery time. Community-weighted trait means had complex relationships to recovery time and the majority were shaped by a statistical interaction between recovery time and stratum, confirming our expectations. However, most trait trajectories converged among strata with increasing recovery time regardless of whether they were related to ant diet or environmental conditions. We confirm the hypothesized interaction among environmental filters during the functional reassembly in tropical forests. Communities in individual strata respond differently to recovery, and possible filter mechanisms likely arise from both abiotic (e.g. microclimate) and biotic (e.g. diet) conditions. Since vertical stratification is prevalent across animal and plant taxa, our results highlight the importance of stratum-specific analysis in dynamic ecosystems and may generalize beyond ants.


Subject(s)
Ants , Ecosystem , Animals , Phylogeny , Forests , Biodiversity
12.
Sci Adv ; 8(31): eabp9908, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35921404

ABSTRACT

Invertebrates constitute the majority of animal species and are critical for ecosystem functioning and services. Nonetheless, global invertebrate biodiversity patterns and their congruences with vertebrates remain largely unknown. We resolve the first high-resolution (~20-km) global diversity map for a major invertebrate clade, ants, using biodiversity informatics, range modeling, and machine learning to synthesize existing knowledge and predict the distribution of undiscovered diversity. We find that ants and different vertebrate groups have distinct features in their patterns of richness and rarity, underscoring the need to consider a diversity of taxa in conservation. However, despite their phylogenetic and physiological divergence, ant distributions are not highly anomalous relative to variation among vertebrate clades. Furthermore, our models predict that rarity centers largely overlap (78%), suggesting that general forces shape endemism patterns across taxa. This raises confidence that conservation of areas important for small-ranged vertebrates will benefit invertebrates while providing a "treasure map" to guide future discovery.


Subject(s)
Ants , Animals , Ants/physiology , Biodiversity , Ecosystem , Invertebrates , Phylogeny , Vertebrates
13.
Sci Rep ; 12(1): 10762, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750774

ABSTRACT

The soil fauna of the tropics remains one of the least known components of the biosphere. Long-term monitoring of this fauna is hampered by the lack of taxonomic expertise and funding. These obstacles may potentially be lifted with DNA metabarcoding. To validate this approach, we studied the ants, springtails and termites of 100 paired soil samples from Barro Colorado Island, Panama. The fauna was extracted with Berlese-Tullgren funnels and then either sorted with traditional taxonomy and known, individual DNA barcodes ("traditional samples") or processed with metabarcoding ("metabarcoding samples"). We detected 49 ant, 37 springtail and 34 termite species with 3.46 million reads of the COI gene, at a mean sequence length of 233 bp. Traditional identification yielded 80, 111 and 15 species of ants, springtails and termites, respectively; 98%, 37% and 100% of these species had a Barcode Index Number (BIN) allowing for direct comparison with metabarcoding. Ants were best surveyed through traditional methods, termites were better detected by metabarcoding, and springtails were equally well detected by both techniques. Species richness was underestimated, and faunal composition was different in metabarcoding samples, mostly because 37% of ant species were not detected. The prevalence of species in metabarcoding samples increased with their abundance in traditional samples, and seasonal shifts in species prevalence and faunal composition were similar between traditional and metabarcoding samples. Probable false positive and negative species records were reasonably low (13-18% of common species). We conclude that metabarcoding of samples extracted with Berlese-Tullgren funnels appear suitable for the long-term monitoring of termites and springtails in tropical rainforests. For ants, metabarcoding schemes should be complemented by additional samples of alates from Malaise or light traps.


Subject(s)
Ants , Arthropods , Isoptera , Animals , Ants/genetics , Arthropods/genetics , Biodiversity , DNA/genetics , DNA Barcoding, Taxonomic/methods , Isoptera/genetics , Soil
14.
Pharmaceutics ; 14(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35631607

ABSTRACT

Coronavirus 2019 disease (COVID-19) represents one of the largest pandemics the world has faced, and it is producing a global health crisis. To date, the availability of drugs to treat COVID-19 infections remains limited to supportive care although therapeutic options are being explored. Some of them are old strategies for treating infectious diseases. convalescent plasma (CP) therapy has been used successfully in other viral outbreaks in the 20th century. In this study, we systematically evaluated the effect and safety of CP therapy on hospitalized COVID-19 patients. A structured search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines using Medline (PubMed), SciELO, Cochrane Library Plus, Web of Science, and Scopus. The search included articles published up to January 2022 and was restricted to English- and Spanish-language publications. As such, investigators identified six randomized controlled trials that met the search criteria. The results determined that in hospitalized COVID-19 patients the administration of CP therapy with a volume between 200-500 mL and a single transfusion performed in 1-2 h, compared to the control group, decreased viral load, symptomatology, the period of infection, and mortality, without serious adverse effects. CP did influence clinical outcomes and may be a possible treatment option, although further studies will be necessary.

15.
PLoS One ; 17(3): e0266222, 2022.
Article in English | MEDLINE | ID: mdl-35358265

ABSTRACT

Tropical forests sustain many ant species whose mating events often involve conspicuous flying swarms of winged gynes and males. The success of these reproductive flights depends on environmental variables and determines the maintenance of local ant diversity. However, we lack a strong understanding of the role of environmental variables in shaping the phenology of these flights. Using a combination of community-level analyses and a time-series model on male abundance, we studied male ant phenology in a seasonally wet lowland rainforest in the Panama Canal. The male flights of 161 ant species, sampled with 10 Malaise traps during 58 consecutive weeks (from August 2014 to September 2015), varied widely in number (mean = 9.8 weeks, median = 4, range = 1 to 58). Those species abundant enough for analysis (n = 97) flew mainly towards the end of the dry season and at the start of the rainy season. While litterfall, rain, temperature, and air humidity explained community composition, the time-series model estimators elucidated more complex patterns of reproductive investment across the entire year. For example, male abundance increased in weeks when maximum daily temperature increased and in wet weeks during the dry season. On the contrary, male abundance decreased in periods when rain receded (e.g., at the start of the dry season), in periods when rain fell daily (e.g., right after the beginning of the wet season), or when there was an increase in the short-term rate of litterfall (e.g., at the end of the dry season). Together, these results suggest that the BCI ant community is adapted to the dry/wet transition as the best timing of reproductive investment. We hypothesize that current climate change scenarios for tropical regions with higher average temperature, but lower rainfall, may generate phenological mismatches between reproductive flights and the adequate conditions needed for a successful start of the colony.


Subject(s)
Ants , Tropical Climate , Animals , Climate Change , Forests , Male , Rain , Seasons , Trees
16.
Ecol Appl ; 32(4): e2559, 2022 06.
Article in English | MEDLINE | ID: mdl-35112764

ABSTRACT

Regrowing secondary forests dominate tropical regions today, and a mechanistic understanding of their recovery dynamics provides important insights for conservation. In particular, land-use legacy effects on the fauna have rarely been investigated. One of the most ecologically dominant and functionally important animal groups in tropical forests are the ants. Here, we investigated the recovery of ant communities in a forest-agricultural habitat mosaic in the Ecuadorian Chocó region. We used a replicated chronosequence of previously used cacao plantations and pastures with 1-34 years of regeneration time to study the recovery dynamics of species communities and functional diversity across the two land-use legacies. We compared two independent components of responses on these community properties: resistance, which is measured as the proportion of an initial property that remains following the disturbance; and resilience, which is the rate of recovery relative to its loss. We found that compositional and trait structure similarity to old-growth forest communities increased with regeneration age, whereas ant species richness remained always at a high level along the chronosequence. Land-use legacies influenced species composition, with former cacao plantations showing higher resemblance to old-growth forests than former pastures along the chronosequence. While resistance was low for species composition and high for species richness and traits, all community properties had similarly high resilience. In essence, our results show that ant communities of the Chocó recovery rapidly, with former cacao reaching predicted old-growth forest community levels after 21 years and pastures after 29 years. Recovery in this community was faster than reported from other ecosystems and was likely facilitated by the low-intensity farming in agricultural sites and their proximity to old-growth forest remnants. Our study indicates the great recovery potential for this otherwise highly threatened biodiversity hotspot.


Subject(s)
Ants , Agriculture , Animals , Ants/physiology , Biodiversity , Ecosystem , Forests
17.
Biology (Basel) ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36671748

ABSTRACT

Sports performance in athletes can be limited by respiratory factors, so it is understandable to propose that inspiratory muscle training (IMT) can improve respiratory function and exercise performance. Power-Breathe® (PwB) is a sectorized respiratory muscle training tool that uses a resistive load to train IMT. There is currently a growing interest in respiratory muscle training, so we set out to systematically assess the effects of IMT with PwB on respiratory parameters and athletic performance in physically active, healthy adults. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, the Cochrane and PEDro scales to assess methodological quality, effect size using the Rosenthal formula, and the Cochrane tool for estimation of risk of bias, studies searchable in Medline, Web of Science, and Cochrane. In addition, for the performance of the meta-analysis, the documentation and quantification of the heterogeneity in each meta-analysis were directed through the Cochran's Q test and the I2 statistic; in addition, a publication bias analysis was performed using funnel plots. Of the total of 241 studies identified in the search, 11 studies for the systematic review and nine for the meta-analysis met the exclusion and/or inclusion criteria. IMT, with PwB, showed significant improvements in maximal inspiratory pressure (MIP) and substantial improvements in forced vital capacity (FVC) in the meta-analysis results. Also, sports performance was significantly increased by IMT with PwB. In conclusion, the use of PwB is an IMT tool that improves respiratory and sports performance.

18.
Sci Rep ; 11(1): 7528, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824365

ABSTRACT

Residues from the wine industry constitute an abundant feedstock for biodiesel production in wine-producing countries. The use of grapeseed oil, together with bioethanol obtained from distillation of wine surplus or grape skins and stalks and wine lees, as reagents in the transesterification reaction, results in a mixture of fatty acid ethyl esters (FAEE), which is a fully renewable, autochthonous, and waste-derived biofuel. In this work, a blend of FAEE produced from grape seed oil with diesel fuel was selected based on a study of fuel properties, and the optimal blend, with 30% v/v of FAEE, was tested in a Euro 6 engine following the Worldwide harmonized Light-duty Test Cycle (WLTC) and a Real Driving Emissions Cycle (RDE), as required in the new certification procedures. Engine performance and emissions from this blend and a commercial diesel fuel were compared. The FAEE blend showed a significant potential to reduce particle emissions, both in mass and number (from 23% in number to 46.5% in mass for WLTC, and from 56% in number to 61% in mass for RDE), and CO (25.5% for WLTC and 39% for RDE) but penalized NOx (32% higher in WLTC and 26.4% higher in RDE).

19.
Waste Biomass Valorization ; 12(5): 2303-2310, 2021.
Article in English | MEDLINE | ID: mdl-32837664

ABSTRACT

ABSTRACT: In Europe, recent regulations on advanced biofuels have prompted a search for new fuel sources and the development of synthesis methods meeting the demanding specifications of the sector. However, in developing countries such as Algeria, where a significant stock of frying oil is unused, the use of diesel engines powered with waste-oil-derived biofuels must be explored. In this work, the variables related to the transesterification reaction from this frying oil with ethanol are analyzed using response surface methodology. From this analysis, only the reaction time and temperature have been determined as relevant parameters. In addition, FT-IR analysis has proven a useful tool to analyse the conversion in the transesterification reaction of waste frying oil with ethanol and is cheaper and quicker than GC-FID. This sustainable biofuel (FAEE), mixed with a diesel and pure fuel, has been physically characterized. The mixture of FAEE at 30% by volume with diesel meets the requirements demanded in standard EN 590 and can be classified as winter diesel class D. As a pure biofuel, only its high cold flow temperatures could constitute a drawback for exporting to temperate climates but not for internal consumption.

20.
Sci Rep ; 11(1): 24530, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34972835

ABSTRACT

Biodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.


Subject(s)
Biodiversity , Ecosystem , Environment , Tropical Climate , Climate , Forests , Models, Theoretical , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...