Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Psychol Serv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358698

ABSTRACT

Despite efforts to identify risk factors associated with suicidal ideation (SI), less work has been conducted to highlight protective factors to promote prevention. Perceived social support has been shown to positively impact a wide range of psychological outcomes; however, prior efforts exploring whether perceived social support moderates the relationship between mental health (MH) symptoms and current SI among men and women have been hampered by limitations. To address knowledge gaps, data from the Comparative Health Assessment Interview Research Study was used to evaluate whether (a) perceived social support moderates the relationship between mental health symptoms (posttraumatic stress, anxiety, alcohol use, depressive) and current SI among veterans and nonveterans; (b) the strength of this moderating effect varies by gender and veteran status; and (c) the strength of this moderating effect varies by social support source (significant other, friend, family). Results suggest that perceived social support is more protective against SI for those with lower levels of mental health symptoms (≤ 25th percentile) than for those with higher symptom levels (≥ 75th percentile). Findings were largely consistent across study groups, support sources, and mental health symptoms examined; however, a significant moderating effect on the alcohol use-SI relationship was only observed for veteran men. Those with a lower mental health symptom severity may receive more benefit from strategies aimed at increasing perceived social support compared to those with higher symptom severity. Research is needed to match protective factors to individual phenotypes, with the goal of engaging those living with SI in more effective interventions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
mSystems ; 8(6): e0071723, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37874170

ABSTRACT

IMPORTANCE: Social and economic inequities can have a profound impact on human health. The inequities could result in alterations to the gut microbiome, an important factor that may have profound abilities to alter health outcomes. Moreover, the strong correlations between social and economic inequities have been long understood. However, to date, limited research regarding the microbiome and mental health within the context of socioeconomic inequities exists. One particular inequity that may influence both mental health and the gut microbiome is living in a food desert. Persons living in food deserts may lack access to sufficient and/or nutritious food and often experience other inequities, such as increased exposure to air pollution and poor access to healthcare. Together, these factors may confer a unique risk for microbial perturbation. Indeed, external factors beyond a food desert might compound over time to have a lasting effect on an individual's gut microbiome. Therefore, adoption of a life-course approach is expected to increase the ecological validity of research related to social inequities, the gut microbiome, and physical and mental health.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Veterans , Humans , Food Deserts , Veterans/psychology , Feces
3.
Front Microbiol ; 14: 1015666, 2023.
Article in English | MEDLINE | ID: mdl-36846764

ABSTRACT

Research on the role of gut microbiota in behavior has grown dramatically. The probiotic L. reuteri can alter social and stress-related behaviors - yet, the underlying mechanisms remain largely unknown. Although traditional laboratory rodents provide a foundation for examining the role of L. reuteri on the gut-brain axis, they do not naturally display a wide variety of social behaviors. Using the highly-social, monogamous prairie vole (Microtus ochrogaster), we examined the effects of L. reuteri administration on behaviors, neurochemical marker expression, and gut-microbiome composition. Females, but not males, treated with live L. reuteri displayed lower levels of social affiliation compared to those treated with heat-killed L. reuteri. Overall, females displayed a lower level of anxiety-like behaviors than males. Live L. reuteri-treated females had lower expression of corticotrophin releasing factor (CRF) and CRF type-2-receptor in the nucleus accumbens, and lower vasopressin 1a-receptor in the paraventricular nucleus of the hypothalamus (PVN), but increased CRF in the PVN. There were both baseline sex differences and sex-by-treatment differences in gut microbiome composition. Live L. reuteri increased the abundance of several taxa, including Enterobacteriaceae, Lachnospiraceae NK4A136, and Treponema. Interestingly, heat-killed L. reuteri increased abundance of the beneficial taxa Bifidobacteriaceae and Blautia. There were significant correlations between changes in microbiota, brain neurochemical markers, and behaviors. Our data indicate that L. reuteri impacts gut microbiota, gut-brain axis and behaviors in a sex-specific manner in socially-monogamous prairie voles. This demonstrates the utility of the prairie vole model for further examining causal impacts of microbiome on brain and behavior.

4.
Article in English | MEDLINE | ID: mdl-35930513

ABSTRACT

For exoskeletons to be successful in real-world settings, they will need to be effective across a variety of terrains, including on inclines. While some single-joint exoskeletons have assisted incline walking, recent successes in level-ground assistance suggest that greater improvements may be possible by optimizing assistance of the whole leg. To understand how exoskeleton assistance should change with incline, we used human-in-the-loop optimization to find whole-leg exoskeleton assistance torques that minimized metabolic cost on a range of grades. We optimized assistance for three non-disabled, expert participants on 5 degree, 10 degree, and 15 degree inclines using a hip-knee-ankle exoskeleton emulator. For all assisted conditions, the cost of transport was reduced by at least 50% relative to walking in the device with no assistance, which is a large improvement to walking comparable to the benefits of whole-leg assistance on level-ground (N = 3). Optimized extension torque magnitudes and exoskeleton power increased with incline. Hip extension, knee extension and ankle plantarflexion often grew as large as allowed by comfort-based limits. Applied powers on steep inclines were double the powers applied during level-ground walking, indicating that greater exoskeleton power may be optimal in scenarios where biological powers and costs are higher. Future exoskeleton devices could deliver large improvements in walking performance across a range of inclines if they have sufficient torque and power capabilities.


Subject(s)
Exoskeleton Device , Ankle , Ankle Joint , Biomechanical Phenomena , Humans , Lower Extremity , Walking
5.
Contemp Clin Trials Commun ; 28: 100960, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35812820

ABSTRACT

Background: United States military Veterans from recent conflicts are experiencing symptoms related to posttraumatic stress disorder (PTSD). Many Veterans are resistant to conventional health and mental health interventions (e.g., medication, psychotherapy). Alternative treatment approaches are needed. An underlying feature of PTSD is exaggerated inflammation, both peripherally and in the central nervous system. This inflammation is thought to play an important role in the vulnerability to, aggravation of, and persistence of PTSD symptoms. Therefore, an innovative intervention strategy would be the use of immunoregulatory/anti-inflammatory probiotics to reduce inflammation. Here we describe the rationale, design, and methods of a randomized placebo-controlled trial (RCT) of Lactobacillus rhamnosus GG (LGG; ATCC 53103) for posttraumatic stress disorder (PTSD). Methods: This is a Phase IIa trial of LGG for United States military Veterans with PTSD, using a longitudinal, double-blind, randomized placebo-controlled design. The primary outcome measure is plasma concentration of high-sensitivity C-reactive protein. Conclusion: Despite the fact that symptoms associated with PTSD can be disabling, individuals living with this trauma-related disorder have limited options in terms of evidence-based interventions. Recent research efforts aimed at highlighting the biological mechanisms of PTSD suggest that increased inflammation and altered autonomic nervous system activity may be treatment targets, and that immunoregulatory probiotics, such as LGG, have the potential to decrease trauma-induced inflammatory responses, as well as associated symptoms. This manuscript describes the best powered human subjects Phase IIa trial, to date, of a probiotic intervention for those living with PTSD.

6.
Compr Psychoneuroendocrinol ; 10: 100123, 2022 May.
Article in English | MEDLINE | ID: mdl-35755197

ABSTRACT

Mild traumatic brain injury (mTBI) is one of the most common injuries experienced by Veterans and can frequently result in a variety of post-concussive symptoms. Post-concussive headaches (PCH), one of the most common symptoms, can persist for years after the injury occurred. The long-lasting impacts of PCH can be extremely distressing for Veterans, thus necessitating the need to find reliable biomarkers that directly relate to subjective feelings of distress. Yoga-based interventions have been shown to improve both subjective and objective markers of stress. Techniques used in yoga, such as the focus on releasing muscular tension, are also recommended as strategies for treating PCH. Thus, yoga-based interventions provide a unique context for the comparison of subjective and objective measures of distress in Veterans with PCH. In this secondary, exploratory analysis, we examined the relationship between perceived distress and cortisol in sixteen Veterans with mTBI and long-term PCH within the context of a yoga intervention feasibility study. The Visual Analogue Scale (VAS), a validated tool for measuring subjective distress, was administered to participants immediately before and after 75-min yoga classes, which occurred twice weekly over eight weeks. Participants also provided salivary cortisol (pre- and post-yoga) at in-person sessions (eight) to compare to changes in VAS scores. We found that VAS scores were significantly reduced within five of the eight assessed yoga classes, but there were no significant changes in cortisol levels. No significant correlations were found between VAS scores and salivary cortisol levels. When looking at how cortisol levels changed over time (i.e., over the series of eight yoga sessions), there was a significant downward trajectory in post-yoga cortisol, but not after taking pre-class cortisol into account (i.e., within yoga session cortisol change over time). Taken together, we found that subjective distress, but not cortisol was reduced by yoga classes. These data suggest that salivary cortisol did not match changes in perceived distress, thus emphasizing the ongoing challenges of relating subjective and objective measures.

7.
PeerJ ; 10: e13231, 2022.
Article in English | MEDLINE | ID: mdl-35722266

ABSTRACT

The truncate soft-shell clam Mya truncata is an important source of country food for Inuit communities across the territory of Nunavut, Canada. M. truncata also plays an important role in marine ecosystems, yet there is little understanding of their life history and condition in Canadian Arctic waters. To provide a foundation on which aspects of the life history and condition of M. truncata of Baffin Island can be monitored in the future with a changing climate and fishery development, this study estimated size at maturity and provides insights into the spawning cycle and weight-length condition indices of clams from inner Frobisher Bay and the north shore of the Hudson Strait. Male and female M. truncata exhibited similar lengths at 50% attainment of sexual maturity, 31 mm and 32 mm shell length (SL), respectively. Most (77%) of the sexually mature M. truncata collected from inner Frobisher Bay in late August and 35% of clams collected from the Hudson Strait in early September were in the ripe stage of gonadal development. These results lead us to suggest a spring spawning season and that M. truncata invest in gonadal development for the next year's spawning during the late summer-early autumn ice-free season while phytoplankton concentrations are high. Dry bodyweight-SL relationships were used to show that M. truncata condition can differ significantly over small and large spatial scales based on plotted 95% confidence intervals.


Subject(s)
Mya , Animals , Female , Male , Canada , Nunavut , Ecosystem , Gonads
8.
Neurobiol Stress ; 16: 100427, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35036478

ABSTRACT

Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.

9.
J Neuroeng Rehabil ; 18(1): 161, 2021 11 07.
Article in English | MEDLINE | ID: mdl-34743714

ABSTRACT

BACKGROUND: Load carriage is common in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 22% relative to walking in the device with no assistance when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. METHODS: We used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed Friedman's tests to analyze trends across worn loads and paired t-tests to determine whether changes from the unassisted conditions to the assisted conditions were significant. RESULTS: Exoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 48% with no load (p = 0.05), 41% with the light load (p = 0.01), and 43% with the heavy load (p = 0.04). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. CONCLUSIONS: Whole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters across participants and conditions suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person's torso results in larger benefits.


Subject(s)
Exoskeleton Device , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Energy Metabolism/physiology , Humans , Quality of Life , Walking/physiology
10.
J Neuroeng Rehabil ; 18(1): 152, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663372

ABSTRACT

BACKGROUND: Autonomous exoskeletons will need to be useful at a variety of walking speeds, but it is unclear how optimal hip-knee-ankle exoskeleton assistance should change with speed. Biological joint moments tend to increase with speed, and in some cases, optimized ankle exoskeleton torques follow a similar trend. Ideal hip-knee-ankle exoskeleton torque may also increase with speed. The purpose of this study was to characterize the relationship between walking speed, optimal hip-knee-ankle exoskeleton assistance, and the benefits to metabolic energy cost. METHODS: We optimized hip-knee-ankle exoskeleton assistance to reduce metabolic cost for three able-bodied participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed Friedman's tests to analyze trends across walking speeds and paired t-tests to determine if changes from the unassisted conditions to the assisted conditions were significant. RESULTS: Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. CONCLUSIONS: Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.


Subject(s)
Exoskeleton Device , Walking Speed , Ankle , Ankle Joint , Biomechanical Phenomena , Gait , Humans , Walking
11.
Front Behav Neurosci ; 15: 802569, 2021.
Article in English | MEDLINE | ID: mdl-35111003

ABSTRACT

The socially monogamous prairie vole (Microtus ochrogaster) offers a unique opportunity to examine the impacts of adolescent social isolation on the brain, immune system, and behavior. In the current study, male and female prairie voles were randomly assigned to be housed alone or with a same-sex cagemate after weaning (i.e., on postnatal day 21-22) for a 6-week period. Thereafter, subjects were tested for anxiety-like and depressive-like behaviors using the elevated plus maze (EPM) and Forced Swim Test (FST), respectively. Blood was collected to measure peripheral cytokine levels, and brain tissue was processed for microglial density in various brain regions, including the Nucleus Accumbens (NAcc), Medial Amygdala (MeA), Central Amygdala (CeA), Bed Nucleus of the Stria Terminalis (BNST), and Paraventricular Nucleus of the Hypothalamus (PVN). Sex differences were found in EPM and FST behaviors, where male voles had significantly lower total arm entries in the EPM as well as lower latency to immobility in the FST compared to females. A sex by treatment effect was found in peripheral IL-1ß levels, where isolated males had a lower level of IL-1ß compared to cohoused females. Post-weaning social isolation also altered microglial density in a brain region-specific manner. Isolated voles had higher microglial density in the NAcc, MeA, and CeA, but lower microglial density in the dorsal BNST. Cohoused male voles also had higher microglial density in the PVN compared to cohoused females. Taken together, these data suggest that post-weaning social housing environments can alter peripheral and central immune systems in prairie voles, highlighting a potential role for the immune system in shaping isolation-induced alterations to the brain and behavior.

12.
Neurobiol Stress ; 13: 100278, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344730

ABSTRACT

The absence of social support, or social isolation, can be stressful, leading to a suite of physical and psychological health issues. Growing evidence suggests that disruption of the gut-immune-brain axis plays a crucial role in the negative outcomes seen from social isolation stress. However, the mechanisms remain largely unknown. The socially monogamous prairie vole (Microtus ochrogaster) has been validated as a useful model for studying negative effects of social isolation on the brain and behaviors, yet how the gut microbiome and central immune system are altered in isolated prairie voles are still unknown. Here, we utilized this social rodent to examine how social isolation stress alters the gut-immune-brain axis and relevant behaviors. Adult male and female prairie voles (n = 48 per sex) experienced social isolation or were cohoused with a same-sex cagemate (control) for six weeks. Thereafter, their social and anxiety-like behaviors, neuronal circuit activation, neurochemical expression, and microgliosis in key brain regions, as well as gut microbiome alterations from the isolation treatment were examined. Social isolation increased anxiety-like behaviors and impaired social affiliation. Isolation also resulted in sex- and brain region-specific alterations in neuronal activation, neurochemical expression, and microgliosis. Further, social isolation resulted in alterations to the gut microbiome that were correlated with key brain and behavioral measures. Our data suggest that social isolation alters the gut-immune-brain axis in a sex-dependent manner and that gut microbes, central glial cells, and neurochemical systems may play a critical, integrative role in mediating negative outcomes from social isolation.

13.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31919172

ABSTRACT

The prairie vole (Microtus ochrogaster) is an important model for the study of social monogamy and dual parental care of offspring. Characterization of specific host species-microbe strain interactions is critical for understanding the effects of the microbiota on mood and behavior. The five metagenome-assembled genome sequences reported here represent an important step in defining the prairie vole microbiome.

14.
J Fish Biol ; 95(6): 1385-1390, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31574561

ABSTRACT

We evaluated whether morphological traits in capelin, Mallotus villosus, that appear to be sexually selected (pectoral fin, pelvic fin, anal fin, lateral ridge) were larger and more variable in males than females compared with naturally selected morphological traits (eyes, dorsal fin). Photographs were obtained of 136 capelin captured at two spawning sites and standardised measurements were taken of six morphological traits. Males had larger traits than females for a given body size and this was most pronounced in the traits thought to be sexually selected. Body size explained much of the variation in female traits but less variation in male traits, suggesting alternative selection pressures are involved. We suggest that larger male body size aids in endurance rivalry and sexually dimorphic traits help males to remain in physical contact with females while spawning on the beach.


Subject(s)
Body Size , Osmeriformes/physiology , Sex Characteristics , Animal Fins/physiology , Animals , Female , Male , Newfoundland and Labrador , Reproduction
15.
Eur J Neurosci ; 50(11): 3689-3701, 2019 12.
Article in English | MEDLINE | ID: mdl-31423669

ABSTRACT

As prairie voles (Microtus ochrogaster) display spontaneous biparental care, and the ventromedial hypothalamus (VMH) has been implicated in reproductive behaviour, we conducted experiments to test the hypothesis that the VMH neurochemical circuitry is involved in alloparental behaviours in male prairie voles. We compared alloparental behaviours of adult, sexually naïve male and female voles-both displayed licking/grooming, huddling and retrieving behaviours towards conspecific pups. We also stained for the immediate-early gene encoded early growth protein Egr-1 in the vole brain. The pup-exposed animals showed levels of Egr-1 staining that was higher in the VMH but lower in the amygdala compared to animals exposed to a pup-sized piece of plastic (control). A retrograde tracer, Fluoro-Gold (FG), was injected into the VMH of male voles that were subsequently tested in the pup exposure or control condition. More FG/Egr-1 cells were detected for glutamatergic (GLU) staining in the ventral bed nucleus of the stria terminalis (BNSTv) and medial amygdala (MeA), whereas less FG/Egr-1 cells were stained for gamma-aminobutyric acid (GABA) in the MeA of the pup-exposed group compared to the control group. Further, the ratio of GLU:GABA expression in FG/Egr-1 projection neurons from both the BNSTv and MeA to the VMH was increased following pup exposure. Finally, pharmacological blockade of either dopamine D1 receptor or oxytocin receptor in the VMH impaired the onset of male alloparental behaviour. Together, these data suggest that the VMH may be involved in the onset of alloparental care and play a role in regulating social approach in male prairie voles.


Subject(s)
Nerve Net/metabolism , Object Attachment , Sex Characteristics , Social Behavior , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Arvicolinae , Dopamine Antagonists/pharmacology , Female , Male , Nerve Net/drug effects , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Receptors, Oxytocin/metabolism , Rodentia , Ventromedial Hypothalamic Nucleus/drug effects
16.
J Sci Med Sport ; 21(11): 1154-1161, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30318056

ABSTRACT

Enhancing the capabilities of the dismounted combatant has been an enduring goal of international military research communities. Emerging developments in exoskeleton technology offers the potential to augment the dismounted combatant's capabilities. However, the ability to determine the value proposition of an exoskeleton in a military context is difficult due to the variety of methods and metrics used to evaluate previous devices. The aim of this paper was to present a standard framework for the evaluation and assessment of exoskeletons for use in the military. A structured and systematic methodology was developed from the end-user perspective and progresses from controlled laboratory conditions (Stage A), to simulated movements specific to the dismounted combatant (Stage B), and real-world military specific tasks (Stage C). A standard set of objective and subjective metrics were described to ensure a holistic assessment on the human response to wearing the exoskeleton and the device's mechanical performance during each stage. A standardised methodology will ensure further advancement of exoskeleton technology and support improved international collaboration across research and industry groups. In doing so, this better enables international military groups to evaluate a system's potential, with the hope of accelerating the maturity and ultimately the fielding of devices to augment the dismounted close combatant and small team capability.


Subject(s)
Exoskeleton Device , Military Personnel , Research Design , Humans , Movement
17.
Behav Brain Res ; 342: 70-78, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29355675

ABSTRACT

Strong social support can negate negative health outcomes - an effect defined as 'social buffering'. In the present study, using the socially monogamous prairie vole (Microtus ochrogaster), we examined whether the presence of a bonded partner during a stressful event can reduce stress responses. Adult, pair-bonded female and male voles were assigned into experimental groups that were either handled (Control), experienced a 1-h immobilization (IMO) stress alone (IMO-Alone), or experienced IMO with their partner (IMO-Partner). Thereafter, subjects were tested for anxiety-like behavior, and brain sections were subsequently processed for oxytocin receptor (OTR) and vasopressin V1a-type receptor (V1aR) binding. Our data indicate that while IMO stress significantly decreased the time that subjects spent in the open arms of an elevated plus maze, partner's presence prevented this behavioral change - this social buffering on anxiety-like behavior was the same for both male and female subjects. Further, IMO stress decreased OTR binding in the nucleus accumbens (NAcc), but a partner's presence dampened this effect. No effects were found in V1aR binding. These data suggest that the neuropeptide- and brain region-specific OTR alterations in the NAcc may be involved in both the mediation and social buffering of stress responses. Some sex differences in the OTR and V1aR binding were also found in selected brain regions, offering new insights into the sexually dimorphic roles of the two neuropeptides. Overall, our results suggest a potential preventative approach in which the presence of social interactions during a stressor may buffer typical negative outcomes.


Subject(s)
Anxiety/physiopathology , Social Environment , Stress, Psychological/physiopathology , Animals , Arvicolinae/physiology , Arvicolinae/psychology , Behavior, Animal/physiology , Brain/metabolism , Female , Male , Neuropeptides/metabolism , Nucleus Accumbens/metabolism , Pair Bond , Receptors, Neuropeptide/metabolism , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Sex Characteristics , Sexual Behavior, Animal/physiology , Social Behavior
18.
J Biomech ; 49(16): 3868-3874, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27789034

ABSTRACT

The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury.


Subject(s)
Knee Injuries/prevention & control , Knee Joint/physiopathology , Running/physiology , Adolescent , Adult , Biomechanical Phenomena , Humans , Male , Military Personnel , Posture , Weight-Bearing , Young Adult
19.
PLoS One ; 10(7): e0130817, 2015.
Article in English | MEDLINE | ID: mdl-26154515

ABSTRACT

In the current study, ten participants walked for two hours while carrying no load or a 40 kg load. During the second hour, treadmill grade was manipulated between a constant downhill or changing between flat, uphill, and downhill grades. Throughout the prolonged walk, participants performed two cognitive tasks, an auditory go no/go task and a visual target detection task. The main findings were that the number of false alarms increased over time in the loaded condition relative to the unloaded condition on the go no/go auditory task. There were also shifts in response criterion towards responding yes and decreased sensitivity in responding in the loaded condition compared to the unloaded condition. In the visual target detection there were no reliable effects of load carriage in the overall analysis however, there were slower reaction times in the loaded compared to unloaded condition during the second hour.


Subject(s)
Cognition , Fatigue/physiopathology , Walking/physiology , Weight-Bearing/physiology , Adolescent , Adult , Exercise Test , Humans , Male , Military Personnel , Muscle Fatigue/physiology , Oxygen Consumption , Reproducibility of Results , Young Adult
20.
J Biomech ; 47(14): 3494-501, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25257813

ABSTRACT

This study quantified how body borne load impacts hip and knee biomechanics during anticipated and unanticipated single-leg cutting maneuvers. Fifteen male military personnel performed a series of single-leg cutting maneuvers with three different load configurations (light, ~6 kg, medium, ~20 kg, and heavy, ~40 kg). Subject-based means of the specific lower limb biomechanical variables were submitted to repeated measures ANOVA to test the main and interaction effects of body borne load and movement type. With body borne load, stance time (P<0.001) increased, while larger hip (P=0.027) and knee flexion (P=0.004), and hip adduction (P<0.001) moments, and decreased hip (P=0.002) and knee flexion (P<0.001), and hip adduction (P=0.003) postures were evident. Further, the hip (P<0.001) and ankle (P=0.024) increased energy absorption, while the knee (P=0.020) increased energy generation with body borne load. During the unanticipated maneuvers, the hip (P=0.009) and knee (P=0.032) increased energy generation, and peak hip flexion moment (P=0.002) increased relative to the anticipated movements. With the body borne load, participants adopted biomechanical patterns that decreased their locomotive ability including larger moments and reduced flexion postures of the lower limb. During the single-leg cut, participants used greater energy absorption from the large, proximal muscles of the hip and greater energy generation from the knee with the addition of load. Participant's performance when carrying a range of loads was not compromised by anticipation, as they did not exhibit the hip and knee kinetic and kinematic adaptations previously demonstrated when reacting to an unplanned stimulus.


Subject(s)
Anticipation, Psychological/physiology , Lower Extremity/physiology , Military Personnel , Movement/physiology , Range of Motion, Articular/physiology , Weight-Bearing/physiology , Adaptation, Physiological/physiology , Adolescent , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Hip Joint/physiology , Humans , Knee Joint/physiology , Male , Muscle, Skeletal/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...